Left ventricular remodeling in preclinical experimental mitral regurgitation of dogs.

[1]  L. Dell’Italia Translational success stories: angiotensin receptor 1 antagonists in heart failure. , 2011, Circulation research.

[2]  T. Denney,et al.  Oxidative stress and myocardial remodeling in chronic mitral regurgitation. , 2011, The American journal of the medical sciences.

[3]  X. Cui,et al.  Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. , 2011, American journal of physiology. Heart and circulatory physiology.

[4]  T. Denney,et al.  Chymase Inhibition Prevents Fibronectin and Myofibrillar Loss and Improves Cardiomyocyte Function and LV Torsion Angle in Dogs With Isolated Mitral Regurgitation , 2010, Circulation.

[5]  T. Denney,et al.  Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation. , 2010, Journal of cardiac failure.

[6]  T. Denney,et al.  Increased oxidative stress and cardiomyocyte myofibrillar degeneration in patients with chronic isolated mitral regurgitation and ejection fraction >60%. , 2010, Journal of the American College of Cardiology.

[7]  T. Denney,et al.  Journal of Cardiovascular Magnetic Resonance Open Access a Dual Propagation Contours Technique for Semi-automated Assessment of Systolic and Diastolic Cardiac Function by Cmr , 2022 .

[8]  Paul Knaapen,et al.  Left ventricular torsion: an expanding role in the analysis of myocardial dysfunction. , 2009, JACC. Cardiovascular imaging.

[9]  T. Denney,et al.  Microarray Identifies Extensive Downregulation of Noncollagen Extracellular Matrix and Profibrotic Growth Factor Genes in Chronic Isolated Mitral Regurgitation in the Dog , 2009, Circulation.

[10]  W. Linke,et al.  Titin-based mechanical signalling in normal and failing myocardium. , 2009, Journal of molecular and cellular cardiology.

[11]  T. Denney,et al.  Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation. , 2008, American journal of physiology. Heart and circulatory physiology.

[12]  J. Molkentin,et al.  Periostin as a Heterofunctional Regulator of Cardiac Development and Disease , 2008, Current genomics.

[13]  W. Gaasch,et al.  Left ventricular response to mitral regurgitation: implications for management. , 2008, Circulation.

[14]  B. Carabello The current therapy for mitral regurgitation. , 2008, Journal of the American College of Cardiology.

[15]  L. Dell’Italia,et al.  Sympathetic Activation Causes Focal Adhesion Signaling Alteration in Early Compensated Volume Overload Attributable to Isolated Mitral Regurgitation in the Dog , 2008, Circulation research.

[16]  G. Walcott,et al.  Upregulation of cardiac interstitial chymase after canine myocardial ischemia and reperfusion , 2008 .

[17]  G. Walcott,et al.  Abstract 962: Beta-1 Adrenergic Receptor Blockade Improves Cardiomyocyte Function but not Remodeling in Chronic Canine Mitral Regurgitation , 2007 .

[18]  Y. Fujii,et al.  Modulation of the tissue reninangiotensin-aldosterone system in dogs with chronic mild regurgitation through the mitral valve. , 2007, American journal of veterinary research.

[19]  Himanshu Gupta,et al.  Effect of primary mitral regurgitation on left ventricular synchrony. , 2007, The American journal of cardiology.

[20]  T. Borg,et al.  Periostin: more than just an adhesion molecule. , 2007, Circulation research.

[21]  R. Cardinal,et al.  Beta1-adrenoceptor blockade mitigates excessive norepinephrine release into cardiac interstitium in mitral regurgitation in dog. , 2006, American journal of physiology. Heart and circulatory physiology.

[22]  Michael D. Schneider,et al.  Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  M. Åbrink,et al.  A Key Role for Mast Cell Chymase in the Activation of Pro-matrix Metalloprotease-9 and Pro-matrix Metalloprotease-2* , 2005, Journal of Biological Chemistry.

[24]  L. Dell’Italia,et al.  &bgr;1-Adrenergic Receptor Blockade Attenuates Angiotensin II–Mediated Catecholamine Release Into the Cardiac Interstitium in Mitral Regurgitation , 2003, Circulation.

[25]  J. S. Janicki,et al.  Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. , 2003, Journal of molecular and cellular cardiology.

[26]  L. Dell’Italia,et al.  Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation in the dog. , 2002, Journal of the American College of Cardiology.

[27]  G. Aurigemma,et al.  Inhibition of the renin-angiotensin system and the left ventricular adaptation to mitral regurgitation. , 2002, Journal of the American College of Cardiology.

[28]  A. Matsumori,et al.  Evidence for a Role of Mast Cells in the Evolution to Congestive Heart Failure , 2002, The Journal of experimental medicine.

[29]  M. Enriquez-Sarano,et al.  Effect of losartan on degree of mitral regurgitation quantified by echocardiography. , 2001, The American journal of cardiology.

[30]  B. Carabello,et al.  Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. , 1999, American journal of physiology. Heart and circulatory physiology.

[31]  M. Zile,et al.  Mechanisms of cardiac hypertrophy in canine volume overload. , 1998, American journal of physiology. Heart and circulatory physiology.

[32]  K. Fang,et al.  Dog Mast Cell α-Chymase Activates Progelatinase B by Cleaving the Phe88-Gln89 and Phe91-Glu92 Bonds of the Catalytic Domain* , 1997, The Journal of Biological Chemistry.

[33]  Y. Shinozaki,et al.  Coronary vasoconstrictive effects of neuropeptide Y and their modulation by the ATP-sensitive potassium channel in anesthetized dogs. , 1997, Journal of the American College of Cardiology.

[34]  A A Young,et al.  Three-dimensional changes in left and right ventricular geometry in chronic mitral regurgitation. , 1996, The American journal of physiology.

[35]  S. Oparil,et al.  Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. , 1995, The American journal of physiology.

[36]  B. Carabello,et al.  Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. , 1994, The Journal of clinical investigation.

[37]  K. Misono,et al.  Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. , 1990, The Journal of biological chemistry.

[38]  S. Vatner,et al.  Subendomyocardial Exhaustion of Blood Flow Reserve and Increased Fibrosis in Conscious Dogs With Heart Failure , 1989, Circulation research.

[39]  S. Ballinger,et al.  Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. , 2011, Journal of molecular and cellular cardiology.

[40]  M. Tsai,et al.  Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. , 2008, Journal of dermatological science.

[41]  H. Pedersen,et al.  Efficacy of enalapril for prevention of congestive heart failure in dogs with myxomatous valve disease and asymptomatic mitral regurgitation. , 2002, Journal of veterinary internal medicine.