Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure

We use molecular dynamics simulations to compute junction thermal conductance of carbon nanotubes as a function of crossing angle and pressure, and conductivity of arrays and bundles consisting of multiple junctions as a function of pressure. Two types of arrays are investigated: crossbar structures consisting of alternating orthogonal layers of nanotubes and close-packed bundles of parallel oriented tubes. Conductance of 90° junction increases with pressure 4 fold before saturation; cross-plane thermal conductivity of crossbar structures increases by a factor of 2. For parallel junctions pressure doubles the conductance while thermal conductivity of nanotubes bundles is more or less pressure independent.

[1]  Pawel Keblinski,et al.  Determination of interfacial thermal resistance at the nanoscale , 2011 .

[2]  W. Evans,et al.  Thermal conductivity of carbon nanotube cross-bar structures , 2010, Nanotechnology.

[3]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[4]  L. Zhigilei,et al.  Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. , 2010, Physical review letters.

[5]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[6]  Deyu Li,et al.  Contact thermal resistance between individual multiwall carbon nanotubes , 2010 .

[7]  Ming Hu,et al.  Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations , 2009 .

[8]  F Cleri,et al.  Turning carbon nanotubes from exceptional heat conductors into insulators. , 2009, Physical review letters.

[9]  G. Galli,et al.  Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation. , 2007, Physical review letters.

[10]  M. Itkis,et al.  Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. , 2007, Nano letters.

[11]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[12]  N. Mingo,et al.  Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". , 2005, Nano letters.

[13]  M. Grujicic,et al.  Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes , 2005 .

[14]  Juexian Cao,et al.  Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process , 2004 .

[15]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[16]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[17]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[18]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[19]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[20]  Tersoff Structural properties of sp3-bonded hydrogenated amorphous carbon. , 1991, Physical review. B, Condensed matter.