Causal and compositional structure of unitary transformations

The causal structure of a unitary transformation is the set of relations of possible influence between any input subsystem and any output subsystem. We study whether such causal structure can be understood in terms of compositional structure of the unitary. Given a quantum circuit with no path from input system A to output system B, system A cannot influence system B. Conversely, given a unitary U with a no-influence relation from input A to output B, it follows from [B. Schumacher and M. D. Westmoreland, Quantum Information Processing 4 no. 1, (Feb, 2005)] that there exists a circuit decomposition of U with no path from A to B. However, as we argue, there are unitaries for which there does not exist a circuit decomposition that makes all causal constraints evident simultaneously. To address this, we introduce a new formalism of `extended circuit diagrams', which goes beyond what is expressible with quantum circuits, with the core new feature being the ability to represent direct sum structures in addition to sequential and tensor product composition. A causally faithful extended circuit decomposition, representing a unitary U, is then one for which there is a path from an input A to an output B if and only if there actually is influence from A to B in U. We derive causally faithful extended circuit decompositions for a large class of unitaries, where in each case, the decomposition is implied by the unitary's respective causal structure. We hypothesize that every finite-dimensional unitary transformation has a causally faithful extended circuit decomposition.

[1]  Michael D. Westmoreland,et al.  Isolation and Information Flow in Quantum Dynamics , 2012 .

[2]  vCaslav Brukner,et al.  Witnessing causal nonseparability , 2015, 1506.03776.

[3]  R. Werner,et al.  Semicausal operations are semilocalizable , 2001, quant-ph/0104027.

[4]  R. Spekkens,et al.  Quantum common causes and quantum causal models , 2016, 1609.09487.

[5]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[6]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[7]  Robert R. Tucci Factorization of Quantum Density Matrices According to Bayesian and Markov Networks , 2007, quant-ph/0701201.

[8]  Mateus Araújo,et al.  Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. , 2016, Physical review letters.

[9]  B. Coecke,et al.  Equivalence of relativistic causal structure and process terminality , 2017, 1708.04118.

[10]  Vincent Nesme,et al.  Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..

[11]  N. Brunner,et al.  Pre- and postselected quantum states: Density matrices, tomography, and Kraus operators , 2013, 1308.2089.

[12]  C. J. Wood,et al.  The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.

[13]  Ciarán M Lee,et al.  Towards Device-Independent Information Processing on General Quantum Networks. , 2017, Physical review letters.

[14]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[15]  Tobias Fritz,et al.  Beyond Bell’s Theorem II: Scenarios with Arbitrary Causal Structure , 2014, 1404.4812.

[16]  Salman Beigi,et al.  Genuine Quantum Nonlocality in the Triangle Network. , 2019, Physical review letters.

[17]  Jonathan Barrett,et al.  Routed quantum circuits , 2021, Quantum.

[18]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[19]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[20]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[21]  C. Heunen,et al.  Categories for Quantum Theory: An Introduction , 2020 .

[22]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[23]  Peter J. Riggs,et al.  QUANTUM CAUSALITY , 2010 .

[24]  Pablo Arrighi,et al.  Quantum Causal Graph Dynamics , 2016, ArXiv.

[25]  Ross Duncan,et al.  Generalised Proof-Nets for Compact Categories with Biproducts , 2009, ArXiv.

[26]  M. Paternostro,et al.  Non-Markovian quantum processes: Complete framework and efficient characterization , 2015, 1512.00589.

[27]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[28]  Y. Aharonov,et al.  The Two-State Vector Formalism: An Updated Review , 2008 .

[29]  Thomas Frauenheim,et al.  Operational Markov Condition for Quantum Processes. , 2018, Physical review letters.

[30]  S. Massar,et al.  Causality and Tsirelson's bounds , 2004, quant-ph/0409066.

[31]  Benjamin Schumacher,et al.  Locality and Information Transfer in Quantum Operations , 2005, Quantum Inf. Process..

[32]  G. D’Ariano,et al.  Derivation of the Dirac Equation from Principles of Information Processing , 2013, 1306.1934.

[33]  G. D’Ariano,et al.  Lorentz symmetry for 3d Quantum Cellular Automata , 2015 .

[34]  J. Barrett,et al.  Quantum Causal Models. , 2019, 1906.10726.

[35]  Jamie Vicary,et al.  Higher Quantum Theory , 2012, 1207.4563.

[36]  Robert R. Tucci Quantum Bayesian Nets , 1995, quant-ph/9706039.

[37]  Pablo Arrighi,et al.  A quantum cellular automaton for one-dimensional QED , 2019, Quantum Inf. Process..

[38]  Ueli Maurer,et al.  Causal Boxes: Quantum Information-Processing Systems Closed Under Composition , 2015, IEEE Transactions on Information Theory.

[39]  Raymond Lal,et al.  Causal Categories: Relativistically Interacting Processes , 2011, 1107.6019.

[40]  Aleks Kissinger,et al.  Picturing Quantum Processes , 2017 .

[41]  P. Perinotti Cellular automata in operational probabilistic theories , 2019, Quantum.

[42]  Probability theories with dynamic causal structure: A New framework for quantum gravity , 2005, gr-qc/0509120.

[43]  Eric Thierry,et al.  Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata , 2011, CiE.

[44]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[45]  D. Gross,et al.  Causal structures from entropic information: geometry and novel scenarios , 2013, 1310.0284.

[46]  Samson Abramsky,et al.  A categorical quantum logic , 2006, Math. Struct. Comput. Sci..

[47]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[48]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[49]  S. Popescu,et al.  Multiple-Time States and Multiple-Time Measurements In Quantum Mechanics , 2007, 0712.0320.

[50]  A. Short,et al.  Causal fermions in discrete space-time , 2013, 1303.4652.

[51]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[52]  Rafael Chaves,et al.  Polynomial Bell Inequalities. , 2015, Physical review letters.

[53]  C. Giarmatzi,et al.  Causal and causally separable processes , 2015, Rethinking Causality in Quantum Mechanics.

[54]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[55]  Jamie Vicary,et al.  Biunitary constructions in quantum information , 2016, Higher Structures.

[56]  Vincent Nesme,et al.  One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations , 2007, LATA.

[57]  Paul Skrzypczyk,et al.  Connecting processes with indefinite causal order and multi-time quantum states , 2017 .

[58]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[59]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[60]  N. Cerf,et al.  Operational quantum theory without predefined time , 2014, 1406.3829.

[61]  C'edric B'eny Causal structure of the entanglement renormalization ansatz , 2011, 1110.4872.

[62]  S. Popescu,et al.  Each instant of time a new Universe , 2013, 1305.1615.

[63]  P. Love,et al.  When is a Quantum Cellular Automaton (QCA) a Quantum Lattice Gas Automaton (QLGA) , 2012, 1209.5367.

[64]  Jamie Vicary,et al.  Shaded tangles for the design and verification of quantum circuits , 2017, Proceedings of the Royal Society A.