Guiding the Controller in Geovisual Analytics to Improve Maritime Surveillance

Maritime traffic surveillance requires a very accurate and continuous analysis of the sea. This area consists of many different objects, actors and rules. Monitoring such a wide and complex area requires adapted visual tools, such as Maritime Surveillance Systems. These tools help identifying abnormal behaviours, which can lead to risky situations. We investigate the usability of visual analytics and geovisualization methods that will improve these systems: a better synthesis of the data and more effective tools lead to improved situation awareness. Visualization methods and needs of controllers being very specific, there is no single solution for modelling, visualizing and analysing maritime data. In this paper, we identify the limits of current research in geovisual analytics for maritime surveillance. A new approach for guiding the selection of visual analytics methods is proposed. The profile of the user, the purpose of use and the situation to analysis are considered together; a knowledge-based system will guide the user toward the most suitable visualization methods.

[1]  Christopher D. Wickens,et al.  A model for types and levels of human interaction with automation , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[2]  Erik Hollnagel,et al.  Barriers And Accident Prevention , 2004 .

[3]  Janet M. Noyes,et al.  People in control: human factors in control room design , 2001 .

[4]  Véronique Beaulieu,et al.  Étude de la visualisation géographique dans un environnement d'exploration interactive de données géodécisionnelles : adaptation et améliorations , 2009 .

[5]  Yvan Bédard,et al.  Spatial Online Analytical Processing (SOLAP): Concepts, Architectures, and Solutions from a Geomatics Engineering Perspective , 2007 .

[6]  Diansheng Guo,et al.  Supporting the Process of Exploring and Interpreting Space–Time Multivariate Patterns: The Visual Inquiry Toolkit , 2008, Cartography and geographic information science.

[7]  Alan M. MacEachren,et al.  Developing a conceptual framework for visually-enabled geocollaboration , 2004, Int. J. Geogr. Inf. Sci..

[8]  Sara Irina Fabrikant,et al.  Introduction: Cognitive Issues in Geographic Information Visualization , 2009, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[10]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[11]  Mica R. Endsley,et al.  Toward a Theory of Situation Awareness in Dynamic Systems , 1995, Hum. Factors.

[12]  Sébastien Fournier,et al.  Intégration de la dimension spatiale au sein d'un modèle multi-agents à base de rôles pour la simulation : Application à la navigation maritime , 2005 .

[13]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[14]  Jarke J. van Wijk,et al.  Visualization of Vessel Traffic , 2013, Situation Awareness with Systems of Systems.

[15]  Véronique Malaisé,et al.  Abstracting and reasoning over ship trajectories and web data with the Simple Event Model (SEM) , 2010, Multimedia Tools and Applications.

[16]  Aldo Napoli,et al.  Surveillance et contrôle des activités des navires en mer , 2008 .

[17]  Michael Davenport,et al.  Information Visualization: The State of the Art for Maritime Domain Awareness , 2006 .

[18]  Göran Falkman,et al.  The role of visualization and interaction in maritime anomaly detection , 2011, Electronic Imaging.

[19]  Sara Irina Fabrikant,et al.  Geovisualization of Dynamics, Movement and Change: Key Issues and Developing Approaches in Visualization Research , 2008, Inf. Vis..

[20]  M.-J. Kraak Visualization viewpoints: beyond geovisualization , 2006, IEEE Computer Graphics and Applications.

[21]  Anthony C. Robinson,et al.  Geovisual Analytics and Crisis Management , 2007 .

[22]  Anthony D. Andre,et al.  Situation Awareness in an Augmented Reality Cockpit: Design, Viewpoints and Cognitive Glue , 2005 .

[23]  Aldo Napoli,et al.  Découverte de règles d'association pour l'aide à la prévision des accidents maritimes , 2012, EGC.

[24]  Aldo Napoli,et al.  The automatic identification system of maritime accident risk using rule-based reasoning , 2012, 2012 7th International Conference on System of Systems Engineering (SoSE).

[25]  Guoray Cai,et al.  Extending Distributed GIS to Support Geo-Collaborative Crisis Management , 2005, Ann. GIS.

[26]  Maria Riveiro,et al.  Visual analytics for maritime anomaly detection , 2011 .

[27]  Erik Hollnagel,et al.  Joint Cognitive Systems: Foundations of Cognitive Systems Engineering , 2005 .

[28]  Franck Guarnieri,et al.  Integration of a Bayesian network for response planning in a maritime piracy risk management system , 2012, 2012 7th International Conference on System of Systems Engineering (SoSE).

[29]  Xiaoru Yuan,et al.  TripVista: Triple Perspective Visual Trajectory Analytics and its application on microscopic traffic data at a road intersection , 2011, 2011 IEEE Pacific Visualization Symposium.