Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging

BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.

[1]  A. Mackay,et al.  In vivo measurement of T2 distributions and water contents in normal human brain , 1997, Magnetic resonance in medicine.

[2]  Nikolaus Weiskopf,et al.  Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation , 2013, Front. Neurosci..

[3]  Christopher D. Kroenke,et al.  Determination of Axonal and Dendritic Orientation Distributions Within the Developing Cerebral Cortex by Diffusion Tensor Imaging , 2012, IEEE Transactions on Medical Imaging.

[4]  Valerij G. Kiselev,et al.  Fiber Density Estimation by Tensor Divergence , 2012, MICCAI.

[5]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[6]  C. Beaulieu The Biological Basis of Diffusion Anisotropy , 2009 .

[7]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[8]  David C. Alsop,et al.  Validating the sensitivity of inhomogeneous magnetization transfer (ihMT) MRI to myelin with fluorescence microscopy , 2019, NeuroImage.

[9]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[10]  Sean K Sethi,et al.  STrategically Acquired Gradient Echo (STAGE) imaging, part II: Correcting for RF inhomogeneities in estimating T1 and proton density. , 2018, Magnetic resonance imaging.

[11]  Julien Cohen-Adad,et al.  Promise and pitfalls of g-ratio estimation with MRI , 2017, NeuroImage.

[12]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[13]  Jun Chen,et al.  Magnetic resonance imaging of myelin using ultrashort Echo time (UTE) pulse sequences: Phantom, specimen, volunteer and multiple sclerosis patient studies , 2016, NeuroImage.

[14]  Alexander Rauscher,et al.  DECAES - DEcomposition and Component Analysis of Exponential Signals. , 2020, Zeitschrift fur medizinische Physik.

[15]  W. Brittin,et al.  Nuclear Magnetic Resonance Studies in Multiple Phase Systems: Lifetime of a Water Molecule in an Adsorbing Phase on Silica Gel , 1957 .

[16]  Emily Louise Baadsvik,et al.  Advances in MRI of the myelin bilayer , 2020, NeuroImage.

[17]  G. B. Pike,et al.  Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI , 2001, Magnetic resonance in medicine.

[18]  S. Aoki,et al.  Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy , 2018, Scientific Reports.

[19]  Ralf Deichmann,et al.  Quantitative in vivo T2 mapping using fast spin echo techniques – A linear correction procedure , 2017, NeuroImage.

[20]  D. Hartline,et al.  Rapid Conduction and the Evolution of Giant Axons and Myelinated Fibers , 2007, Current Biology.

[21]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[22]  Siawoosh Mohammadi,et al.  Four in vivo g‐ratio‐weighted imaging methods: Comparability and repeatability at the group level , 2018, Human brain mapping.

[23]  Kathryn L. West,et al.  Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex , 2017, NeuroImage.

[24]  Brian Hansen,et al.  Diffusion time dependence of microstructural parameters in fixed spinal cord , 2017, NeuroImage.

[25]  M. Barth,et al.  Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters , 2020, Frontiers in Neuroscience.

[26]  John G. Sled,et al.  Modelling and interpretation of magnetization transfer imaging in the brain , 2017, NeuroImage.

[27]  Piotr Kozlowski,et al.  Multi‐spin echo T2 relaxation imaging with compressed sensing (METRICS) for rapid myelin water imaging , 2020, Magnetic resonance in medicine.

[28]  Meher R. Juttukonda,et al.  Characterizing inter‐compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy , 2013, Magnetic resonance in medicine.

[29]  O. Josephs,et al.  Robust and Fast Whole Brain Mapping of the RF Transmit Field B1 at 7T , 2012, PloS one.

[30]  P. Dechent,et al.  High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI , 2008, Magnetic resonance in medicine.

[32]  N. Stikov,et al.  Scan–rescan of axcaliber, macromolecular tissue volume, and g‐ratio in the spinal cord , 2017, Magnetic resonance in medicine.

[33]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[34]  Jeremy J. Flint,et al.  Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue — Implications for MRI studies of human autopsy samples , 2009, NeuroImage.

[35]  D. Alsop,et al.  Magnetization transfer from inhomogeneously broadened lines: A potential marker for myelin , 2015, Magnetic Resonance in Medicine.

[36]  K. D. Harkins,et al.  Effect of intercompartmental water exchange on the apparent myelin water fraction in multiexponential T2 measurements of rat spinal cord , 2012, Magnetic resonance in medicine.

[37]  T. Tsumoto,et al.  Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Julien Cohen-Adad,et al.  In vivo histology of the myelin g-ratio with magnetic resonance imaging , 2015, NeuroImage.

[39]  Christopher L Lankford,et al.  On the inherent precision of mcDESPOT , 2013, Magnetic resonance in medicine.

[40]  R S Balaban,et al.  Quantitative 1H magnetization transfer imaging in vivo , 1991, Magnetic resonance in medicine.

[41]  Hongjian He,et al.  MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times , 2020, NeuroImage.

[42]  Matthew D. Budde,et al.  Design and Validation of Diffusion MRI Models of White Matter , 2017, Front. Phys..

[43]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[44]  G. B. Pike,et al.  MRI‐based myelin water imaging: A technical review , 2015, Magnetic resonance in medicine.

[45]  Matteo Mancini,et al.  Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects , 2018, NeuroImage.

[46]  Julien Cohen-Adad,et al.  AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks , 2017, Scientific Reports.

[47]  Andrew L. Alexander,et al.  Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging , 2016, NeuroImage.

[48]  Mara Cercignani,et al.  Quantitative MRI of the Brain : Principles of Physical Measurement, Second edition , 2018 .

[49]  N. Schuff,et al.  Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection , 2015, The Lancet Neurology.

[50]  C. Beaulieu Chapter 8 – The Biological Basis of Diffusion Anisotropy , 2014 .

[51]  Jennifer A McNab,et al.  Characterization of Axonal Disease in Patients with Multiple Sclerosis Using High-Gradient-Diffusion MR Imaging. , 2016, Radiology.

[52]  R. Lenkinski,et al.  Microstructural correlates of 3D steady‐state inhomogeneous magnetization transfer (ihMT) in the human brain white matter assessed by myelin water imaging and diffusion tensor imaging , 2018, Magnetic resonance in medicine.

[53]  Francisco Aboitiz,et al.  Species Differences and Similarities in the Fine Structure of the Mammalian Corpus callosum , 2001, Brain, Behavior and Evolution.

[54]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[55]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[56]  M. Rydmark,et al.  Axon diameter and myelin sheath thickness in nerve fibres of the ventral spinal root of the seventh lumbar nerve of the adult and developing cat. , 1983, Journal of anatomy.

[57]  Rajiv Midha,et al.  Is multicomponent T2 a good measure of myelin content in peripheral nerve? , 2003, Magnetic resonance in medicine.

[58]  Jiadi Xu,et al.  Magnetization Transfer Contrast and Chemical Exchange Saturation Transfer MRI. Features and analysis of the field-dependent saturation spectrum , 2017, NeuroImage.

[59]  Alejandro F. Frangi,et al.  Double Diffusion Encoding Prevents Degeneracy in Parameter Estimation of Biophysical Models in Diffusion MRI , 2018, 1809.05059.

[60]  Nikolaus Weiskopf,et al.  Example dataset for the hMRI toolbox , 2019, Data in brief.

[61]  R. Deichmann,et al.  Quantitative T1 and proton density mapping with direct calculation of radiofrequency coil transmit and receive profiles from two‐point variable flip angle data , 2016, NMR in biomedicine.

[62]  Ralf Deichmann,et al.  Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities , 2012, NeuroImage.

[63]  石原大地 Diffusional kurtosis imaging を用いたグリオーマのグレード鑑別におけるベイズ推定法の有用性の検討 , 2015 .

[64]  Nikolaus Weiskopf,et al.  Hyperelastic Susceptibility Artifact Correction of DTI in SPM , 2013, Bildverarbeitung für die Medizin.

[65]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[66]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[67]  Hui Zhang,et al.  Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI) , 2017, NeuroImage.

[68]  Piotr Kozlowski,et al.  Temporal phase correction of multiple echo T2 magnetic resonance images. , 2013, Journal of magnetic resonance.

[69]  Hui Zhang,et al.  Imaging brain microstructure with diffusion MRI: practicality and applications , 2019, NMR in biomedicine.

[70]  Rafael Neto Henriques,et al.  Microscopic anisotropy misestimation in spherical‐mean single diffusion encoding MRI , 2019, Magnetic resonance in medicine.

[71]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[72]  Julien Cohen-Adad,et al.  g-Ratio weighted imaging of the human spinal cord in vivo , 2017, NeuroImage.

[73]  D. Gochberg,et al.  Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord , 2010, Magnetic resonance in medicine.

[74]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[75]  Shannon H Kolind,et al.  One component? Two components? Three? The effect of including a nonexchanging “free” water component in multicomponent driven equilibrium single pulse observation of T1 and T2 , 2013, Magnetic resonance in medicine.

[76]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[77]  Adam C. Searleman,et al.  Inversion recovery UTE based volumetric myelin imaging in human brain using interleaved hybrid encoding , 2020, Magnetic resonance in medicine.

[78]  Alejandro F. Frangi,et al.  Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding , 2018, Magnetic resonance in medicine.

[79]  P. Mitra,et al.  Conventions and nomenclature for double diffusion encoding NMR and MRI , 2016, Magnetic resonance in medicine.

[80]  Mark D. Does,et al.  Inferring brain tissue composition and microstructure via MR relaxometry , 2018, NeuroImage.

[81]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[82]  R. Henkelman,et al.  Magnetization transfer in MRI: a review , 2001, NMR in biomedicine.

[83]  Jelle Veraart,et al.  One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? , 2015, NeuroImage.

[84]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[85]  C. Morrison,et al.  A Model for Magnetization Transfer in Tissues , 1995, Magnetic resonance in medicine.

[86]  Johannes Haybaeck,et al.  The influence of brain iron on myelin water imaging , 2019, NeuroImage.

[87]  C. Beaulieu,et al.  Water diffusion in the giant axon of the squid: Implications for diffusion‐weighted MRI of the nervous system , 1994, Magnetic resonance in medicine.

[88]  Nikolaus Weiskopf,et al.  NODDI-DTI: Estimating Neurite Orientation and Dispersion Parameters from a Diffusion Tensor in Healthy White Matter , 2017, Front. Neurosci..

[89]  I. Vavasour,et al.  Non‐negative least squares computation for in vivo myelin mapping using simulated multi‐echo spin‐echo T2 decay data , 2020, NMR in biomedicine.

[90]  Josef Parvizi,et al.  Quantifying the local tissue volume and composition in individual brains with MRI , 2013, Nature Medicine.

[91]  A. MacKay,et al.  Magnetic Resonance of Myelin Water: An in vivo Marker for Myelin , 2016, Brain plasticity.

[92]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[93]  Ralf Deichmann,et al.  Quantitative T*2‐mapping based on multi‐slice multiple gradient echo flash imaging: Retrospective correction for subject motion effects , 2011, Magnetic resonance in medicine.

[94]  Christian Langkammer,et al.  Effects of formalin fixation and temperature on MR relaxation times in the human brain , 2016, NMR in biomedicine.

[95]  Corrigendum to Ellerbrock et al. (2018) “Four in vivo g‐ratio‐weighted imaging methods: Comparability and repeatability at the group level” , 2018, Human brain mapping.

[96]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[97]  Patrick Freund,et al.  The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI , 2017, NeuroImage.

[98]  Alex L. MacKay,et al.  Quantitative interpretation of NMR relaxation data , 1989 .

[99]  W. Rushton A theory of the effects of fibre size in medullated nerve , 1951, The Journal of physiology.

[100]  Emilie T. McKinnon,et al.  Measuring intra‐axonal T2 in white matter with direction‐averaged diffusion MRI , 2018, Magnetic resonance in medicine.

[101]  Julien Cohen-Adad,et al.  Quantitative magnetization transfer imaging made easy with qMTLab: Software for data simulation, analysis, and visualization , 2015 .

[102]  T. Chomiak,et al.  What Is the Optimal Value of the g-Ratio for Myelinated Fibers in the Rat CNS? A Theoretical Approach , 2009, PloS one.

[103]  Nikolaus Weiskopf,et al.  hMRI – A toolbox for quantitative MRI in neuroscience and clinical research , 2019, NeuroImage.

[104]  David H. Miller,et al.  Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation , 2008, Magnetic resonance in medicine.

[105]  P. Lundberg,et al.  Novel method for rapid, simultaneous T1, T*2, and proton density quantification , 2007, Magnetic resonance in medicine.

[106]  H. Mcconnell Reaction Rates by Nuclear Magnetic Resonance , 1958 .

[107]  Giovanni Giulietti,et al.  Characterizing axonal myelination within the healthy population: a tract-by-tract mapping of effects of age and gender on the fiber g-ratio , 2017, Neurobiology of Aging.

[108]  L. Wald,et al.  Imaging G-Ratio in Multiple Sclerosis Using High-Gradient Diffusion MRI and Macromolecular Tissue Volume , 2019, American Journal of Neuroradiology.

[109]  Jelle Veraart,et al.  In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy , 2016, NeuroImage.

[110]  Kathryn L. West,et al.  Experimental studies of g-ratio MRI in ex vivo mouse brain , 2018, NeuroImage.

[111]  Nikolaus Weiskopf,et al.  Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA) data , 2019, NeuroImage.

[112]  R. Douglas Fields,et al.  A new mechanism of nervous system plasticity: activity-dependent myelination , 2015, Nature Reviews Neuroscience.

[113]  C. Birkl,et al.  Myelin water imaging depends on white matter fiber orientation in the human brain , 2020, bioRxiv.

[114]  F. Dick,et al.  Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers , 2015, Front. Neurosci..

[115]  Roza Umarova,et al.  Fiber density estimation from single q-shell diffusion imaging by tensor divergence , 2013, NeuroImage.

[116]  I. Koerte,et al.  Diffusion Tensor Imaging , 2014 .

[117]  Dong-Hyun Kim,et al.  Physiological noise compensation in gradient-echo myelin water imaging , 2015, NeuroImage.

[118]  D. Graf von Keyserlingk,et al.  Diameter of axons and thickness of myelin sheaths of the pyramidal tract fibres in the adult human medullary pyramid. , 1984, Anatomischer Anzeiger.

[119]  J. Modersitzki,et al.  Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images , 2012, Physics in medicine and biology.

[120]  A. MacKay,et al.  Are mono‐exponential fits to a few echoes sufficient to determine T2 relaxation for in vivo human brain? , 1999, Magnetic resonance in medicine.

[121]  S. Geyer,et al.  Biophysically motivated efficient estimation of the spatially isotropic R2* component from a single gradient‐recalled echo measurement , 2019, Magnetic resonance in medicine.

[122]  C. Westin,et al.  Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling , 2018, Human brain mapping.

[123]  David H. Miller,et al.  Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain , 2004, Annals of neurology.

[124]  I Levesque,et al.  Regional variations in normal brain shown by quantitative magnetization transfer imaging , 2004, Magnetic resonance in medicine.

[125]  Kathryn L. West,et al.  Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains , 2016, NeuroImage.

[126]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[127]  B. Mädler,et al.  Insights into brain microstructure from the T2 distribution. , 2006, Magnetic resonance imaging.

[128]  A. Lutti,et al.  Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. , 2015, Current opinion in neurology.

[129]  O. Abe,et al.  Analysis of White Matter Damage in Patients with Multiple Sclerosis via a Novel In Vivo MR Method for Measuring Myelin, Axons, and G-Ratio , 2017, American Journal of Neuroradiology.

[130]  C. Hildebrand,et al.  Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species , 1978, Journal of the Neurological Sciences.

[131]  K. Scheffler,et al.  Feasibility of in vivo myelin water imaging using 3D multigradient‐echo pulse sequences , 2012, Magnetic resonance in medicine.

[132]  W. Block,et al.  Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects , 2016, Magnetic resonance in medicine.

[133]  C. Beaulieu,et al.  Determinants of anisotropic water diffusion in nerves , 1994, Magnetic resonance in medicine.

[134]  R. Bowtell,et al.  Fiber orientation-dependent white matter contrast in gradient echo MRI , 2012, Proceedings of the National Academy of Sciences.

[135]  Brian A. Wandell,et al.  Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure , 2011, NeuroImage.

[136]  Joseph V. Hajnal,et al.  Inherent and unpredictable bias in multi-component DESPOT myelin water fraction estimation , 2019, NeuroImage.

[137]  Richard Bowtell,et al.  Gradient echo based fiber orientation mapping using R2* and frequency difference measurements , 2013, NeuroImage.

[138]  M. Jorge Cardoso,et al.  Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry , 2016, Human brain mapping.

[139]  T. Knösche,et al.  Action potential propagation and synchronisation in myelinated axons , 2019, PLoS computational biology.

[140]  A. Alexander,et al.  Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation , 2019, PloS one.

[141]  G. B. Pike,et al.  Characterizing healthy and diseased white matter using quantitative magnetization transfer and multicomponent T2 relaxometry: A unified view via a four‐pool model , 2009, Magnetic resonance in medicine.

[142]  J M Bland,et al.  Statistical methods for assessing agreement between two methods of clinical measurement , 1986 .

[143]  Kathryn L. West,et al.  Myelin volume fraction imaging with MRI , 2016, NeuroImage.

[144]  Paul S. Tofts,et al.  Quantitative MRI of the brain : measuring changes caused by disease , 2003 .

[145]  S. Berman,et al.  Modeling conduction delays in the corpus callosum using MRI-measured g-ratio , 2019, NeuroImage.

[146]  Derek K. Jones,et al.  Gleaning multicomponent T1 and T2 information from steady‐state imaging data , 2008, Magnetic resonance in medicine.

[147]  Dong-Hyun Kim,et al.  Improved estimation of myelin water fraction using complex model fitting , 2015, NeuroImage.

[148]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[149]  Trevor Hastie,et al.  Evaluating quantitative proton‐density‐mapping methods , 2016, Human brain mapping.

[150]  Steffen Bollmann,et al.  Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T , 2017, NeuroImage.

[151]  A. Lutti,et al.  A General Linear Relaxometry Model of R1 Using Imaging Data , 2014, Magnetic resonance in medicine.

[152]  Jeff H. Duyn,et al.  Micro-compartment specific T2 ⁎ relaxation in the brain , 2013, NeuroImage.

[153]  S. Aoki,et al.  MR g-ratio-weighted connectome analysis in patients with multiple sclerosis , 2019, Scientific Reports.

[154]  R. Lebel,et al.  Transverse relaxometry with stimulated echo compensation , 2010, Magnetic resonance in medicine.

[155]  M. Reisert,et al.  A unique analytical solution of the white matter standard model using linear and planar encodings , 2018, Magnetic resonance in medicine.

[156]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[157]  Derek K. Jones,et al.  Estimating axon conduction velocity in vivo from microstructural MRI , 2019, NeuroImage.

[158]  J. S. Coggan,et al.  Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling , 2015, International journal of molecular sciences.

[159]  Kathryn L. West,et al.  A revised model for estimating g-ratio from MRI , 2016, NeuroImage.

[160]  David H. Miller,et al.  Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: A pilot study with application to magnetisation transfer measurements , 2012, NeuroImage.