Superior Performance of a Li–O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon‐Free Cathode

Dr. F. Li, Dr. T. Zhang, Dr. K. Liao, Prof. H. Zhou Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono , Tsukuba 305-8568 , Japan E-mail: hs.zhou@aist.go.jp Dr. F. Li, Prof. A. Yamada, Prof. H. Zhou Department of Chemical System Engineering The University of Tokyo 7-3-1, Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan Dr. D.-M. Tang, Prof. D. Golberg International Center for Young Scientists (ICYS) World Premier International (WPI) Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1, Namiki , Tsukuba 305-0044 , Japan Prof. P. He, Prof. H. Zhou National Laboratory of Solid State Microstructures and Department of Energy Science and Engineering Nanjing University Nanjing 210093 , China

[1]  Zhaolin Liu,et al.  Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries. , 2015, Nanoscale.

[2]  Dmitri Golberg,et al.  Li‐O2 Battery Based on Highly Efficient Sb‐Doped Tin Oxide Supported Ru Nanoparticles , 2014, Advanced materials.

[3]  Dunwei Wang,et al.  Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition. , 2014, Journal of the American Chemical Society.

[4]  Jian Zhang,et al.  Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential , 2014, Scientific Reports.

[5]  Yong‐Sheng Hu,et al.  Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations , 2014 .

[6]  Y. Shao-horn,et al.  Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. , 2014, The journal of physical chemistry letters.

[7]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[8]  Ping He,et al.  Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. , 2014, Angewandte Chemie.

[9]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[10]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[11]  H. Byon,et al.  Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. , 2013, Nano letters.

[12]  Bing Sun,et al.  Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance , 2013, Scientific Reports.

[13]  Haoshen Zhou,et al.  The pursuit of rechargeable solid-state Li–air batteries , 2013 .

[14]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[15]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[16]  Haoshen Zhou,et al.  Enhanced Cycling Performance of Li‐O2 Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes , 2013 .

[17]  Tao Zhang,et al.  Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes , 2013 .

[18]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[19]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[20]  Ji‐Guang Zhang,et al.  Effects of Electrolyte Salts on the Performance of Li–O2 Batteries , 2013 .

[21]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[22]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[23]  Sanjeev Mukerjee,et al.  Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte , 2013 .

[24]  Si Hyoung Oh,et al.  Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. , 2012, Nature chemistry.

[25]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[26]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[27]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[28]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[29]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[30]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[31]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[32]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[33]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[34]  Yu‐Guo Guo,et al.  Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity , 2006, Nature materials.

[35]  U. Stimming,et al.  Novel nanocomposite Pt/RuO2x H2O/carbon nanotube catalysts for direct methanol fuel cells. , 2006, Angewandte Chemie.

[36]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[37]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[38]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[39]  H. Schäfer,et al.  Zur Chemie der Platinmetalle. RuO2 Chemischer Transport, Eigenschaften, thermischer Zerfall , 1963 .