On the Fixed-Parameter Tractability of the Maximum Connectivity Improvement Problem

In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G = (V,E) and an integer B and we are asked to find B new edges to be added to G in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]-hard for parameter B and it is FPT for parameters |V |− B and ν, the matching number of G. We further characterize the MCI problem with respect to other complementary parameters.

[1]  Manos Papagelis,et al.  Refining Social Graph Connectivity via Shortcut Edge Addition , 2015, ACM Trans. Knowl. Discov. Data.

[2]  Martin Olsen,et al.  On the approximability of the link building problem , 2014, Theor. Comput. Sci..

[3]  Pierluigi Crescenzi,et al.  Greedily Improving Our Own Closeness Centrality in a Network , 2016, ACM Trans. Knowl. Discov. Data.

[4]  Guy Kortsarz,et al.  Approximating Minimum-Cost Connectivity Problems , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[5]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[6]  A. Frank Connections in Combinatorial Optimization , 2011 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Petr A. Golovach,et al.  Parameterized Algorithms to Preserve Connectivity , 2014, ICALP.

[9]  László A. Végh,et al.  Fixed-Parameter Algorithms for Minimum-Cost Edge-Connectivity Augmentation , 2013, TALG.

[10]  Saket Saurabh,et al.  Parameterized Algorithms for Survivable Network Design with Uniform Demands , 2018, SODA.

[11]  Yong Gao,et al.  The parametric complexity of graph diameter augmentation , 2013, Discret. Appl. Math..

[12]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..

[13]  S. Raghavan A Note on Eswaran and Tarjan’s Algorithm for the Strong Connectivity Augmentation Problem , 2005 .

[14]  Pierluigi Crescenzi,et al.  Improving the Betweenness Centrality of a Node by Adding Links , 2017, ACM J. Exp. Algorithmics.

[15]  Manuel Sorge,et al.  The Parameterized Complexity of Centrality Improvement in Networks , 2017, SOFSEM.

[16]  Guy Kortsarz,et al.  Steiner Forest Orientation Problems , 2011, SIAM J. Discret. Math..

[17]  Federico Coro,et al.  On the Maximum Connectivity Improvement Problem , 2018, ALGOSENSORS.

[18]  Gianlorenzo D'Angelo,et al.  Coverage Centrality Maximization in Undirected Networks , 2018, AAAI.

[19]  Róbert Sasák Comparing 17 graph parameters , 2010 .

[20]  Gregory Gutin,et al.  Path-Contractions, Edge Deletions and Connectivity Preservation , 2017, ESA.

[21]  Konstantin Avrachenkov,et al.  The Effect of New Links on Google Pagerank , 2006 .

[22]  Zeev Nutov,et al.  Improved Approximation Algorithms for Minimum Cost Node-Connectivity Augmentation Problems , 2018, Theory of Computing Systems.

[23]  Zeev Nutov Node-Connectivity Survivable Network Problems , 2018, Handbook of Approximation Algorithms and Metaheuristics.

[24]  László A. Végh,et al.  Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[25]  Adam Meyerson,et al.  Minimizing Average Shortest Path Distances via Shortcut Edge Addition , 2009, APPROX-RANDOM.

[26]  Morteza Zadimoghaddam,et al.  Minimizing the Diameter of a Network Using Shortcut Edges , 2010, SWAT.

[27]  Pierluigi Crescenzi,et al.  Greedily Improving Our Own Centrality in A Network , 2015, SEA.

[28]  László A. Végh,et al.  Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation , 2013, ICALP.

[29]  Marco Cesati,et al.  Compendium of Parameterized Problems , 2006 .

[30]  Magnus Wahlström,et al.  Directed Multicut is W[1]-hard, Even for Four Terminal Pairs , 2015, SODA.