On the Complexity of Optimization Problems for 3-dimensional Convex Polyhedra and Decision Trees

Abstract We show that several well-known optimization problems involving 3-dimensional convex polyhedra and decision trees are NP-hard or NP-complete. One of the techniques we employ is a linear-time method for realizing a planar 3-connected triangulation as a convex polyhedron, which may be of independent interest.

[1]  Alok Aggarwal,et al.  Finding Minimal Convex Nested Polygons , 1989, Inf. Comput..

[2]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[3]  Nimrod Megiddo,et al.  On the complexity of polyhedral separability , 1988, Discret. Comput. Geom..

[4]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[5]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.

[6]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[7]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[8]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[9]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[10]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[11]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[12]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[13]  Charles B. Silio An Efficient Simplex Coverability Algorithm in E2 with Application to Stochastic Sequential Machines , 1979, IEEE Transactions on Computers.

[14]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[15]  G. Das,et al.  Approximation schemes in computational geometry , 1990 .

[16]  Herbert Edelsbrunner,et al.  Minimum Polygonal Separation , 1986, Inf. Comput..

[17]  David M. Mount Intersection detection and separators for simple polygons , 1992, SCG '92.

[18]  Gautam Das,et al.  Minimum Vertex Hulls for Polyhedral Domains , 1992, Theor. Comput. Sci..

[19]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[20]  Helmut Alt,et al.  Approximate matching of polygonal shapes , 1995, SCG '91.

[21]  Joseph S. B. Mitchell,et al.  Separation and approximation of polyhedral surfaces , 1991 .

[22]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[23]  Kristin P. Bennett,et al.  Decision Tree Construction Via Linear Programming , 1992 .

[24]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[25]  Joseph O'Rourke The Computational Geometry Column #4 , 1988, COMG.

[26]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[27]  Marek Chrobak,et al.  Convex drawings of graphs in two and three dimensions (preliminary version) , 1996, SCG '96.

[28]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[29]  Kenneth L. Clarkson,et al.  Algorithms for Polytope Covering and Approximation , 1993, WADS.

[30]  J. Ross Quinlan,et al.  Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..

[31]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[32]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[33]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[34]  J. Stephen Judd,et al.  On the complexity of loading shallow neural networks , 1988, J. Complex..

[35]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[36]  Richard L. White,et al.  DECISION TREES FOR AUTOMATED IDENTIFICATION OF COSMIC-RAY HITS IN HUBBLE SPACE TELESCOPE IMAGES , 1995 .

[37]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.