On the Complexity of Optimization Problems for 3-dimensional Convex Polyhedra and Decision Trees
暂无分享,去创建一个
[1] Alok Aggarwal,et al. Finding Minimal Convex Nested Polygons , 1989, Inf. Comput..
[2] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[3] Nimrod Megiddo,et al. On the complexity of polyhedral separability , 1988, Discret. Comput. Geom..
[4] Simon Kasif,et al. A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..
[5] Victor Klee,et al. Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.
[6] Alberto Maria Segre,et al. Programs for Machine Learning , 1994 .
[7] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[8] David G. Kirkpatrick,et al. Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..
[9] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[10] Kurt Mehlhorn,et al. Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.
[11] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[12] Ronald L. Rivest,et al. Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..
[13] Charles B. Silio. An Efficient Simplex Coverability Algorithm in E2 with Application to Stochastic Sequential Machines , 1979, IEEE Transactions on Computers.
[14] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[15] G. Das,et al. Approximation schemes in computational geometry , 1990 .
[16] Herbert Edelsbrunner,et al. Minimum Polygonal Separation , 1986, Inf. Comput..
[17] David M. Mount. Intersection detection and separators for simple polygons , 1992, SCG '92.
[18] Gautam Das,et al. Minimum Vertex Hulls for Polyhedral Domains , 1992, Theor. Comput. Sci..
[19] H. S. M. Coxeter,et al. Vorlesungen über die Theorie der Polyeder , 1935 .
[20] Helmut Alt,et al. Approximate matching of polygonal shapes , 1995, SCG '91.
[21] Joseph S. B. Mitchell,et al. Separation and approximation of polyhedral surfaces , 1991 .
[22] Michael T. Goodrich,et al. Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..
[23] Kristin P. Bennett,et al. Decision Tree Construction Via Linear Programming , 1992 .
[24] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[25] Joseph O'Rourke. The Computational Geometry Column #4 , 1988, COMG.
[26] Subhash Suri,et al. Surface approximation and geometric partitions , 1994, SODA '94.
[27] Marek Chrobak,et al. Convex drawings of graphs in two and three dimensions (preliminary version) , 1996, SCG '96.
[28] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[29] Kenneth L. Clarkson,et al. Algorithms for Polytope Covering and Approximation , 1993, WADS.
[30] J. Ross Quinlan,et al. Simplifying Decision Trees , 1987, Int. J. Man Mach. Stud..
[31] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[32] Ronald L. Rivest,et al. Training a 3-node neural network is NP-complete , 1988, COLT '88.
[33] David A. Landgrebe,et al. A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..
[34] J. Stephen Judd,et al. On the complexity of loading shallow neural networks , 1988, J. Complex..
[35] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[36] Richard L. White,et al. DECISION TREES FOR AUTOMATED IDENTIFICATION OF COSMIC-RAY HITS IN HUBBLE SPACE TELESCOPE IMAGES , 1995 .
[37] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.