Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures

[1]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[2]  Huajian Gao,et al.  Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands , 2012 .

[3]  Klaus Hackl,et al.  The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries , 2012 .

[4]  L. Martin,et al.  Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries , 2012 .

[5]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[6]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[7]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[8]  Liping Liu THEORY OF ELASTICITY , 2012 .

[9]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[10]  Xingcheng Xiao,et al.  Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries , 2011, Advanced materials.

[11]  Yang Liu,et al.  In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. , 2011, Nano letters.

[12]  Sehee Lee,et al.  Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. , 2011, Journal of the American Chemical Society.

[13]  Hui Wu,et al.  Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. , 2011, Nano letters.

[14]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[15]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[16]  Yi Cui,et al.  One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials , 2011 .

[17]  Zhigang Suo,et al.  Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. , 2011, Nano letters.

[18]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[19]  Zhigang Suo,et al.  Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge , 2011 .

[20]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[21]  Huixin Chen,et al.  Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries , 2011 .

[22]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[23]  Xiangyun Song,et al.  The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes , 2011 .

[24]  Fuqian Yang Criterion for insertion-induced microcracking and debonding of thin films , 2011 .

[25]  P. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010, 1108.0567.

[26]  A. Bower,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010, 1108.0372.

[27]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[28]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[29]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[30]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[31]  N. Imanishi,et al.  Li-ion diffusion in amorphous Si films prepared by RF magnetron sputtering: A comparison of using liquid and polymer electrolytes , 2010 .

[32]  Huajian Gao,et al.  A surface locking instability for atomic intercalation into a solid electrode , 2010 .

[33]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[34]  Jing Xu,et al.  Determination of the diffusion coefficient of lithium ions in nano-Si , 2009 .

[35]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[36]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[37]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[38]  M. Armand,et al.  Building better batteries , 2008, Nature.

[39]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[40]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[41]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[42]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[43]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[44]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[45]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[46]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[47]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[48]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[49]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[50]  Z. Suo,et al.  Mixed mode cracking in layered materials , 1991 .

[51]  R. Huggins Solid State Ionics , 1989 .