Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome

[1]  M. Marin,et al.  p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling , 2015, Cell Death and Differentiation.

[2]  A. Levine,et al.  TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation , 2014, Proceedings of the National Academy of Sciences.

[3]  T. Mak,et al.  TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity , 2014, Proceedings of the National Academy of Sciences.

[4]  J. Friedman 'It's complicated'. , 2014, Rhode Island medical journal.

[5]  Amber Vennum,et al.  “It’s complicated” , 2014 .

[6]  T. Mak,et al.  TAp73 enhances the pentose phosphate pathway and supports cell proliferation , 2013, Nature Cell Biology.

[7]  J. Haigh,et al.  The p53 family and VEGF regulation , 2013, Cell cycle.

[8]  Charles Keller,et al.  Utilizing signature-score to identify oncogenic pathways of cholangiocarcinoma. , 2013, Translational cancer research.

[9]  M. Shakibaei,et al.  Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. , 2012, American journal of physiology. Heart and circulatory physiology.

[10]  H. Stunnenberg,et al.  Crosstalk between c-Jun and TAp73α/β contributes to the apoptosis–survival balance , 2011, Nucleic acids research.

[11]  F. McKeon,et al.  Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. , 2011, The Journal of allergy and clinical immunology.

[12]  G. Del Sal,et al.  p73 as a Pharmaceutical Target for Cancer Therapy , 2011, Current pharmaceutical design.

[13]  Y. Kitadai Angiogenesis and Lymphangiogenesis of Gastric Cancer , 2010, Journal of oncology.

[14]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[15]  E. Sbisà,et al.  p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. , 2009, Cancer research.

[16]  Hyun Cheol Chung,et al.  Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer , 2009, PLoS genetics.

[17]  Erwin G. Van Meir,et al.  Identification of a Novel Small Molecule HIF-1α Translation Inhibitor , 2009, Clinical Cancer Research.

[18]  Wei Wang,et al.  piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells , 2009, Nature.

[19]  M. Celeste Simon,et al.  The impact of O2 availability on human cancer , 2008, Nature Reviews Cancer.

[20]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[21]  I. Jurisica,et al.  TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. , 2008, Genes & development.

[22]  J. Pietenpol,et al.  A Gene Signature-Based Approach Identifies mTOR as a Regulator of p73 , 2008, Molecular and Cellular Biology.

[23]  L. Corcos,et al.  TAp73β and DNp73β activate the expression of the pro-survival caspase-2S , 2008, Nucleic acids research.

[24]  Brigitte M Pützer,et al.  DNp73 a matter of cancer: mechanisms and clinical implications. , 2008, Biochimica et biophysica acta.

[25]  Marie-José Goumans,et al.  Endoglin in angiogenesis and vascular diseases , 2008, Angiogenesis.

[26]  Ling-Feng Wang,et al.  Increased expression of hypoxia-inducible factor 1alpha in the nasal polyps. , 2007, American journal of otolaryngology.

[27]  Yili Yang,et al.  Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. , 2007, Cancer research.

[28]  R. Jaenisch,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2007, Nature.

[29]  R. Johnson,et al.  Hypoxia: A key regulator of angiogenesis in cancer , 2007, Cancer and Metastasis Reviews.

[30]  H. Ng,et al.  p73 supports cellular growth through c-Jun-dependent AP-1 transactivation , 2007, Nature Cell Biology.

[31]  C. Hawkey,et al.  Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization. , 2007, Cellular signalling.

[32]  K. Sabapathy,et al.  Multiple Stress Signals Induce p73β Accumulation , 2004 .

[33]  D. Livingston,et al.  Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. , 2004, Cancer cell.

[34]  D. Bowtell,et al.  Siah2 Regulates Stability of Prolyl-Hydroxylases, Controls HIF1α Abundance, and Modulates Physiological Responses to Hypoxia , 2004, Cell.

[35]  A. Harris,et al.  Hypoxia Inducible Carbonic Anhydrase IX, Marker of Tumour: Hypoxia, Survival Pathway and Therapy Target , 2004, Cell cycle.

[36]  G. Semenza Targeting HIF-1 for cancer therapy , 2003, Nature Reviews Cancer.

[37]  P. Ratcliffe,et al.  Regulation of angiogenesis by hypoxia: role of the HIF system , 2003, Nature Medicine.

[38]  G. Melino,et al.  p73: Friend or foe in tumorigenesis , 2002, Nature Reviews Cancer.

[39]  Y. Matsumura,et al.  TAp63γ (p51A) and dNp63α (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression , 2002, Oncogene.

[40]  B. Pützer,et al.  Role of p73 in malignancy: tumor suppressor or oncogene? , 2002, Cell Death and Differentiation.

[41]  F. Vikhanskaya,et al.  p73 overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis , 2001, Oncogene.

[42]  R. Weiss,et al.  p73 is a growth-regulated protein in vascular smooth muscle cells and is present at high levels in human atherosclerotic plaque. , 2001, Cellular signalling.

[43]  F. Ismail-Beigi,et al.  Regulation of glut1 mRNA by Hypoxia-inducible Factor-1 , 2001, The Journal of Biological Chemistry.

[44]  D. Marmé,et al.  Expression of the vascular endothelial growth factor gene is inhibited by p73 , 2000, Oncogene.

[45]  F. McKeon,et al.  An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. , 2000, Science.

[46]  L. Ellis,et al.  Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. , 2000, Cancer research.

[47]  G Melino,et al.  The p53/p63/p73 family of transcription factors: overlapping and distinct functions. , 2000, Journal of cell science.

[48]  S. Chi,et al.  Loss of imprinting and elevated expression of wild-type p73 in human gastric adenocarcinoma. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[49]  U. Moll,et al.  Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. , 1999, Cancer research.

[50]  Jijie Gu,et al.  p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage , 1999, Nature.

[51]  Reuven Agami,et al.  Interaction of c-Abl and p73α and their collaboration to induce apoptosis , 1999, Nature.

[52]  Antonio Costanzo,et al.  The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage , 1999, Nature.

[53]  C. Prives,et al.  p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells , 1999, Molecular and Cellular Biology.

[54]  E. Fearon,et al.  Siah-1 N-Terminal RING Domain Is Required for Proteolysis Function, and C-Terminal Sequences Regulate Oligomerization and Binding to Target Proteins , 1999, Molecular and Cellular Biology.

[55]  P. Beer-Romero,et al.  Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. , 1995, Science.

[56]  E. Sage,et al.  PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors , 1994, The Journal of cell biology.

[57]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[58]  K. Sabapathy,et al.  Multiple stress signals induce p73beta accumulation. , 2004, Neoplasia.