High-oxidation-governed fluid evolution in the Naruo porphyry Cu-Au deposit, Tibet, China

[1]  D. Alderton Fluid Inclusions , 2021, Encyclopedia of Geology.

[2]  Chaoqiang Liu,et al.  High oxidation magmatic evolution in the Naruo porphyry Cu deposit, Tibet, China , 2019 .

[3]  Yasushi Watanabe,et al.  Role of Potassic Alteration for Porphyry Cu Mineralization: Implication for the Absence of Porphyry Cu Deposits in Japan , 2018 .

[4]  A. Gerdes,et al.  Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany , 2018 .

[5]  P. Candela,et al.  The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits , 2017 .

[6]  Chao Yang,et al.  Petrogenesis and Tectonics of the Naruo Porphyry Cu(Au) Deposit Related Intrusion in the Duolong Area, Central Tibet , 2017 .

[7]  K. Kouzmanov,et al.  Sulfide Minerals in Hydrothermal Deposits , 2017 .

[8]  G. Beaudoin,et al.  Geochronology and geochemistry of porphyritic intrusions in the Duolong porphyry and epithermal Cu-Au district, central Tibet: Implications for the genesis and exploration of porphyry copper deposits , 2017 .

[9]  K. Qin,et al.  Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu–Au deposit, central Tibet: evidence from zircon U–Pb geochronology, petrochemistry and Sr–Nd–Pb–Hf isotope characteristics , 2016 .

[10]  J. Richards The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny , 2015 .

[11]  Wei Li,et al.  The Fault Systerm of the North Section of Liaodong Salient, Constraints from Seismic Data and Physical Modeling Experiment , 2015 .

[12]  Wei-dong Sun,et al.  Porphyry deposits and oxidized magmas , 2015 .

[13]  J. Dubessy,et al.  Stability and abundance of the trisulfur radical ion S-3(-) in hydrothermal fluids , 2015 .

[14]  Zhou Yu,et al.  Chronology and Crust‐Mantle Mixing of Ore‐forming Porphyry of the Bangongco: Evidence from Zircon U‐Pb Age and Hf Isotopes of the Naruo Porphyry Copper‐Gold Deposit , 2015 .

[15]  J. Wilkinson Triggers for the formation of porphyry ore deposits in magmatic arcs , 2013 .

[16]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[17]  W. Fan,et al.  The link between reduced porphyry copper deposits and oxidized magmas , 2013 .

[18]  G. Pokrovski,et al.  Speciation and Transport of Metals and Metalloids in Geological Vapors , 2013 .

[19]  A. Audétat,et al.  High Cu concentrations in vapor-type fluid inclusions : an artifact? , 2012 .

[20]  R. Botcharnikov,et al.  Temperature dependence of sulfide and sulfate solubility in olivine-saturated basaltic magmas , 2011 .

[21]  J. Richards Magmatic to hydrothermal metal fluxes in convergent and collided margins , 2011 .

[22]  K. Qin,et al.  High‐temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper–gold deposit, Northern Tibet , 2011 .

[23]  Zhangqun Li Zhang L.The discovery of Jurassic accretionary complexes in Duolong area,northern Bangong Co-Nujiang suture zone,Tibet,and its geologic significance , 2011 .

[24]  R. Sillitoe Porphyry Copper Systems , 2010 .

[25]  P. Jugo Sulfur content at sulfide saturation in oxidized magmas , 2009 .

[26]  Guangming Li,et al.  Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metallogenic tectonic settings , 2008 .

[27]  T. Driesner,et al.  The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl , 2007 .

[28]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[29]  C. Heinrich Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation , 2007 .

[30]  G. Gehrels,et al.  Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet , 2006 .

[31]  S. Kesler Ore-Forming Fluids , 2005 .

[32]  G. N. Phillips,et al.  Role of CO2 in the formation of gold deposits , 2004, Nature.

[33]  C. Heinrich,et al.  Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah , 2004 .

[34]  K. Hattori,et al.  Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA , 2001 .

[35]  A. Hezarkhani,et al.  Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran , 1999 .

[36]  D. Günther,et al.  Mobility and H2O loss from fluid inclusions in natural quartz crystals , 1999 .

[37]  T. Gerlach,et al.  Magmatic Vapor Source for Sulfur Dioxide Released During Volcanic Eruptions: Evidence from Mount Pinatubo , 1994, Science.

[38]  R. Bodnar,et al.  Can economic porphyry copper mineralization be generated by a typical calc‐alkaline melt? , 1991 .

[39]  E. U. Franck,et al.  The System Water—Carbon Dioxide—Sodium Chloride to 773 K and 300 MPa , 1986 .

[40]  R. Bodnar A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids , 1983 .

[41]  L. B. Gustafson,et al.  The porphyry copper deposit at El Salvador, Chile , 1975 .