1 Temporal signal and the phylodynamic threshold of SARS-CoV-2 2 3

[1]  Nichollas E. Scott,et al.  Direct RNA sequencing and early evolution of SARS-CoV-2 , 2020, bioRxiv.

[2]  Tanja Stadler,et al.  Improved multi-type birth-death phylodynamic inference in BEAST 2 , 2020, bioRxiv.

[3]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[4]  Sebastián Duchêne,et al.  Bayesian Evaluation of Temporal Signal in Measurably Evolving Populations , 2019, bioRxiv.

[5]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[6]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[7]  Veronika Boskova,et al.  The influence of phylodynamic model specifications on parameter estimates of the Zika virus epidemic , 2018, Virus evolution.

[8]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[9]  Guy Baele,et al.  Emerging Concepts of Data Integration in Pathogen Phylodynamics , 2016, Systematic biology.

[10]  Meade Bernard,et al.  Spartan HPC-Cloud Hybrid: Delivering Performance and Flexibility , 2017 .

[11]  M. Suchard,et al.  Genealogical Working Distributions for Bayesian Model Testing with Phylogenetic Uncertainty. , 2016, Systematic biology.

[12]  Andrew Rambaut,et al.  Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) , 2016, Virus evolution.

[13]  John J. Welch,et al.  The effect of genetic structure on molecular dating and tests for temporal signal , 2015, Methods in ecology and evolution.

[14]  L. du Plessis,et al.  Getting to the root of epidemic spread with phylodynamic analysis of genomic data. , 2015, Trends in microbiology.

[15]  O. Pybus,et al.  Measurably evolving pathogens in the genomic era. , 2015, Trends in ecology & evolution.

[16]  Sebastián Duchêne,et al.  The Performance of the Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data. , 2015, Molecular biology and evolution.

[17]  Veronika Boskova,et al.  Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models , 2014, PLoS Comput. Biol..

[18]  Wai Lok Sibon Li,et al.  Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. , 2012, Molecular biology and evolution.

[19]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[20]  Ming-Hui Chen,et al.  Choosing among Partition Models in Bayesian Phylogenetics , 2010, Molecular biology and evolution.

[21]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[22]  A. Rodrigo,et al.  Measurably evolving populations , 2003 .

[23]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[24]  A. Lapedes,et al.  Timing the ancestor of the HIV-1 pandemic strains. , 2000, Science.

[25]  T Gojobori,et al.  Molecular clock of viral evolution, and the neutral theory. , 1990, Proceedings of the National Academy of Sciences of the United States of America.