Direct synthesis of group IV-vacancy center-containing nanodiamonds via detonation process using aromatic compound as group IV element source

[1]  M. Ashida,et al.  Effect of Particle Size on the Optical Properties of Silicon‐Vacancy Centers in Nanodiamonds Fabricated by a Detonation Process , 2022, Physica Status Solidi (a).

[2]  Meilin Liu,et al.  All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds , 2022, Carbon.

[3]  B. Saikia,et al.  Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds , 2022, Journal of Fluorescence.

[4]  Yan Liu,et al.  Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry , 2021, Nano letters.

[5]  A. Vehanen,et al.  On the Mechanism of Formation of Detonation Diamonds , 2021, Journal of Superhard Materials.

[6]  M. Shirakawa,et al.  Fabrication of Detonation Nanodiamonds Containing Silicon‐Vacancy Color Centers by High Temperature Annealing , 2021, physica status solidi (a).

[7]  Noel H. Wan,et al.  Quantum networks based on color centers in diamond , 2021, Journal of Applied Physics.

[8]  Yutaka Shikano,et al.  Diamond quantum thermometry: from foundations to applications , 2021, Nanotechnology.

[9]  Ming Liu,et al.  Straightforward synthesis of silicon vacancy (SiV) center-containing single-digit nanometer nanodiamonds via detonation process , 2021 .

[10]  M. Nesladek,et al.  Direct Structural Identification and Quantification of the Split-Vacancy Configuration for Implanted Sn in Diamond. , 2020, Physical review letters.

[11]  I. Aharonovich,et al.  Controlled doping of GeV and SnV color centers in diamond using chemical vapor deposition. , 2020, ACS applied materials & interfaces.

[12]  Honghao Ma,et al.  Review on the exploration of condensed carbon formation mechanism in detonation products , 2020 .

[13]  T. Plakhotnik,et al.  Formation of interstitial silicon defects in Si- and Si,P-doped nanodiamonds and thermal susceptibilities of SiV− photoluminescence band , 2020, Nanotechnology.

[14]  V. Davydov,et al.  Nitrogen and group-IV (Si, Ge) vacancy color centres in nano-diamonds: photoluminescence study at high temperature (25 °C–600 °C) , 2020, Materials Research Express.

[15]  T. Taniguchi,et al.  Spectroscopic investigations of negatively charged tin-vacancy centres in diamond , 2019, New Journal of Physics.

[16]  Haining Li,et al.  Enhanced and switchable silicon-vacancy photoluminescence in air-annealed nanocrystalline diamond films , 2020 .

[17]  Matthew E. Trusheim,et al.  Quantum nanophotonics with group IV defects in diamond , 2019, Nature Communications.

[18]  O. Shenderova,et al.  A Perspective on Fluorescent Nanodiamond Bioimaging. , 2019, Small.

[19]  E. Ekimov,et al.  Effect of Si, Ge and Sn dopant elements on structure and photoluminescence of nano- and microdiamonds synthesized from organic compounds , 2019, Diamond and Related Materials.

[20]  Á. Gali,et al.  The (eg ⊗ eu) ⊗ Eg product Jahn–Teller effect in the neutral group-IV vacancy quantum bits in diamond , 2019, npj Computational Materials.

[21]  R. Uzbekov,et al.  Single Silicon Vacancy Centers in 10 nm Diamonds for Quantum Information Applications , 2018, ACS Applied Nano Materials.

[22]  Fahad S. Alghannam,et al.  Fluorescent nanodiamonds: past, present, and future , 2018, Nanophotonics.

[23]  C. Becher,et al.  Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds , 2018, New Journal of Physics.

[24]  P. Hemmer,et al.  Tin-vacancy in diamonds for luminescent thermometry , 2018, Applied Physics Letters.

[25]  Á. Gali,et al.  Ab Initio Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond , 2018, Physical Review X.

[26]  Yuri N. Palyanov,et al.  Germanium-Vacancy Color Center in Diamond as a Non-invasive Temperature Sensor , 2017, 1709.00456.

[27]  F. Jelezko,et al.  Tin-Vacancy Quantum Emitters in Diamond. , 2017, Physical review letters.

[28]  P. Olivero,et al.  Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation , 2017, 1708.01467.

[29]  M. Lukin,et al.  All-optical nanoscale thermometry with silicon-vacancy centers in diamond , 2017, 1708.05419.

[30]  F. Jelezko,et al.  Photoluminescence excitation spectroscopy of SiV− and GeV− color center in diamond , 2017, 1705.10486.

[31]  C. P. Epperla,et al.  Measuring Nanoscale Thermostability of Cell Membranes with Single Gold-Diamond Nanohybrids. , 2017, Angewandte Chemie.

[32]  O. Shenderova,et al.  Toward a golden standard in single digit detonation nanodiamond , 2016 .

[33]  Toshiro Inubushi,et al.  Germanium-Vacancy Single Color Centers in Diamond , 2015, Scientific Reports.

[34]  T. Plakhotnik,et al.  All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz−1/2 , 2015, Nanotechnology.

[35]  De-Wen Duan,et al.  Nitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. , 2014, Current opinion in chemical biology.

[36]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[37]  Christina Streli,et al.  Determinations of low atomic number elements in real uranium oxide samples using vacuum chamber total reflection X‐ray fluorescence , 2014 .

[38]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[39]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[40]  J. Maze,et al.  Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties , 2013, 1310.2137.

[41]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[42]  F. Jelezko,et al.  Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis , 2011 .

[43]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[44]  V. Danilenko Nanodiamonds: Problems and prospects , 2010 .

[45]  O. Stéphan,et al.  High Nitrogen Doping of Detonation Nanodiamonds , 2010 .

[46]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[47]  Hsiao-Yun Wu,et al.  Characterization and application of single fluorescent nanodiamonds as cellular biomarkers , 2007, Proceedings of the National Academy of Sciences.

[48]  V. Danilenko Specific Features of Synthesis of Detonation Nanodiamonds , 2005 .

[49]  M. Rayson,et al.  Vacancy-impurity complexes and limitations for implantation doping of diamond , 2005 .

[50]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[51]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[52]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.

[53]  S. Rand,et al.  Electronic structure of the N-V center in diamond: Theory , 1996 .

[54]  M. L. Hobbs,et al.  Nonideal thermoequilibrium calculations using a large product species data base , 1992 .

[55]  R. Corriu,et al.  Reactivity of Dianionic Hexacoordinate Germanium Complexes Toward Organometallic Reagents. A New Route to Organogermanes. , 1991 .

[56]  J. E. Galle,et al.  Organosilicon compounds with functional groups proximate to silicon: XVII. Synthetic and mechanistic aspects of the lithiation of α,β-epoxyalkylsilanes and related α-heterosubstituted epoxides , 1988 .

[57]  D. Quane Bond energy terms for methylsilanes and methylchlorosilanes , 1971 .

[58]  H. Gilman,et al.  Selective Reactions of the Silicon-Hydrogen Group with Grignard Reagents. The Preparation of Some Unsymmetrical Silane Derivatives , 1959 .