Self-assembly of amphiphilic dendritic dipeptides into helical pores

[1]  Gregory A. Jerman,et al.  Glass Formation and Polyamorphism in Rare‐Earth Oxide–Aluminum Oxide Compositions , 2004 .

[2]  S. Matile,et al.  Synthetic multifunctional pores: lessons from rigid-rod β-barrels , 2003 .

[3]  J. Lehn,et al.  Helicity-Encoded Molecular Strands: Efficient Access by the Hydrazone Route and Structural Features , 2003 .

[4]  Sergei Vinogradov,et al.  Porphyrin and tetrabenzoporphyrin dendrimers: tunable membrane-impermeable fluorescent pH nanosensors. , 2003, Journal of the American Chemical Society.

[5]  K. D. Singer,et al.  Self-organization of supramolecular helical dendrimers into complex electronic materials , 2002, Nature.

[6]  V. Percec,et al.  Synthesis and NaOTf mediated self-assembly of monodendritic crown ethers. , 2002, Chemistry.

[7]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[8]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[9]  P. McMillan,et al.  Polyamorphic transitions in yttria–alumina liquids , 2001 .

[10]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[11]  W. S. Graswinckel,et al.  β-Helical Polymers from Isocyanopeptides , 2001, Science.

[12]  Juan R. Granja,et al.  Antibacterial agents based on the cyclic d,l-α-peptide architecture , 2001, Nature.

[13]  Juan R. Granja,et al.  Self-Assembling Organic Nanotubes. , 2001, Angewandte Chemie.

[14]  Virgil Percec,et al.  Synthesis and Structural Analysis of Two Constitutional Isomeric Libraries of AB2-Based Monodendrons and Supramolecular Dendrimers , 2001 .

[15]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[16]  E. W. Meijer,et al.  Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs , 2000, Nature.

[17]  E. W. Meijer,et al.  Hierarchical Growth of Chiral Self-Assembled Structures in Protic Media† , 2000 .

[18]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[19]  R. Nolte,et al.  Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity , 1999, Science.

[20]  T. Emrick,et al.  Self-assembly of dendritic structures , 1999 .

[21]  B. Kear,et al.  High pressure/low temperature sintering of nanocrystalline alumina , 1998 .

[22]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[23]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[24]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[25]  Goran Ungar,et al.  Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers , 1997 .

[26]  J S Moore,et al.  Solvophobically driven folding of nonbiological oligomers. , 1997, Science.

[27]  G. Ungar,et al.  Rational Design of the First Spherical Supramolecular Dendrimers Self-Organized in a Novel Thermotropic Cubic Liquid-Crystalline Phase and the Determination of Their Shape by X-Ray-Analysis , 1997 .

[28]  W. Nellis,et al.  Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction , 1996 .

[29]  B. Pitard,et al.  Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. , 1995, Biochimica et biophysica acta.

[30]  A. Inoue,et al.  Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state , 1995 .

[31]  K. Dill,et al.  Models of cooperativity in protein folding. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1994, Nature.

[33]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[34]  Tao Zhang,et al.  Glass-forming ability of alloys , 1993 .

[35]  Masaki Maeda,et al.  Preparation of high-strength and translucent alumina by hot isostatic pressing , 1992 .

[36]  C. Angell Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit , 1988 .

[37]  J. Shelby formation and properties of calcium aluminosilicate glasses , 1985 .

[38]  Aaron Klug,et al.  From Macromolecules to Biological Assemblies (Nobel Lecture) , 1983 .

[39]  P. McMillan,et al.  Raman spectroscopy of calcium aluminate glasses and crystals , 1983 .

[40]  A Klug,et al.  From macromolecules to biological assemblies , 1983, Bioscience reports.

[41]  H. Herman,et al.  Ultra-rapid quenching of laser-melted binary and unary oxides , 1980 .

[42]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[43]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[44]  C. Walle,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles , 2003, Nature.

[45]  T. Shishido,et al.  Glass Formation in the Ln-Al-O System (Ln : Lanthanoid and Yttrium Elements) , 1976 .

[46]  M. Cohen,et al.  Composition Requirements for Glass Formation in Metallic and Ionic Systems , 1961, Nature.