Detecting correlated columns in relational databases with mixed data types
暂无分享,去创建一个
Klemens Böhm | Emmanuel Müller | Hoang Vu Nguyen | Periklis Andritsos | Klemens Böhm | H. Nguyen | Emmanuel Müller | Periklis Andritsos
[1] Stefan Berchtold,et al. Efficient Biased Sampling for Approximate Clustering and Outlier Detection in Large Data Sets , 2003, IEEE Trans. Knowl. Data Eng..
[2] Beng Chin Ooi,et al. Automatic discovery of attributes in relational databases , 2011, SIGMOD '11.
[3] Alekh Jindal,et al. A Comparison of Knives for Bread Slicing , 2013, Proc. VLDB Endow..
[4] P. Grünwald. The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .
[5] Jian Pei,et al. Mining frequent cross-graph quasi-cliques , 2009, TKDD.
[6] Renée J. Miller,et al. Information-theoretic tools for mining database structure from large data sets , 2004, SIGMOD '04.
[7] Paul Brown,et al. GORDIAN: efficient and scalable discovery of composite keys , 2006, VLDB.
[8] Srinivasan Parthasarathy,et al. Toward unsupervised correlation preserving discretization , 2005, IEEE Transactions on Knowledge and Data Engineering.
[9] Jilles Vreeken,et al. Summarizing categorical data by clustering attributes , 2011, Data Mining and Knowledge Discovery.
[10] Jeffrey F. Naughton,et al. On schema matching with opaque column names and data values , 2003, SIGMOD '03.
[11] Stanley B. Zdonik,et al. CORADD , 2010, Proc. VLDB Endow..
[12] Paul Brown,et al. BHUNT: Automatic Discovery of Fuzzy Algebraic Constraints in Relational Data , 2003, VLDB.
[13] Andrew B. Nobel,et al. Mining non-redundant high order correlations in binary data , 2008, Proc. VLDB Endow..
[14] Yunmei Chen,et al. Cumulative residual entropy: a new measure of information , 2004, IEEE Transactions on Information Theory.
[15] Yunmei Chen,et al. A test of independence based on a generalized correlation function , 2011, Signal Process..
[16] Noga Alon,et al. The Space Complexity of Approximating the Frequency Moments , 1999 .
[17] Guimei Liu,et al. Effective Pruning Techniques for Mining Quasi-Cliques , 2008, ECML/PKDD.
[18] Divesh Srivastava,et al. Summary graphs for relational database schemas , 2011, Proc. VLDB Endow..
[19] Christian S. Jensen,et al. Lightweight graphical models for selectivity estimation without independence assumptions , 2011, Proc. VLDB Endow..
[20] Klemens Böhm,et al. HiCS: High Contrast Subspaces for Density-Based Outlier Ranking , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[21] Peter J. Bickel,et al. The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[22] Nimrod Megiddo,et al. Discovery-Driven Exploration of OLAP Data Cubes , 1998, EDBT.
[23] Jessika Weiss,et al. Graphical Models In Applied Multivariate Statistics , 2016 .
[24] Michel Verleysen,et al. Nonlinear Dimensionality Reduction , 2021, Computer Vision.
[25] Klemens Böhm,et al. CMI: An Information-Theoretic Contrast Measure for Enhancing Subspace Cluster and Outlier Detection , 2013, SDM.
[26] Yi Zhang,et al. Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.
[27] Xudong Jiang,et al. Complete discriminant evaluation and feature extraction in kernel space for face recognition , 2008, Machine Vision and Applications.
[28] Michael Mitzenmacher,et al. Detecting Novel Associations in Large Data Sets , 2011, Science.
[29] Paul Brown,et al. CORDS: automatic discovery of correlations and soft functional dependencies , 2004, SIGMOD '04.
[30] S. Rachev. The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .
[31] Felix Naumann,et al. Scalable Discovery of Unique Column Combinations , 2013, Proc. VLDB Endow..
[32] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[33] Ira Assent,et al. DensEst: Density Estimation for Data Mining in High Dimensional Spaces , 2009, SDM.
[34] Divesh Srivastava,et al. Type-based categorization of relational attributes , 2009, EDBT '09.
[35] Klemens Böhm,et al. 4S: Scalable subspace search scheme overcoming traditional Apriori processing , 2013, 2013 IEEE International Conference on Big Data.