A stabilization algorithm of the Navier–Stokes equations based on algebraic Bernoulli equation

SUMMARY In this paper, we consider the stabilization of the nonstationary incompressible Navier–Stokes equations around a stationary solution by a boundary linear feedback control. The feedback operator is obtained from the solution of the algebraic Bernoulli equation associated with the penalized linearized Navier–Stokes equations around an unstable stationary solution and is used to locally stabilize the original nonlinear equations. We give the explicit factorized form of the stabilizing solution of the algebraic Bernoulli equation. The numerical effectiveness of this approach is demonstrated by stabilizing the vortex shedding behind a circular obstacle. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[2]  D. Barkley Linear analysis of the cylinder wake mean flow , 2006 .

[3]  K. Chrysafinos ESTIMATES FOR TIME-DISCRETIZATIONS FOR THE VELOCITY TRACKING PROBLEM FOR NAVIER-STOKES FLOWS BY PENALTY METHODS , 2006 .

[5]  D. Calvetti,et al.  Partial Eigenvalue Assignment for Large Linear Control Systems , 2022 .

[6]  Mehdi Badra,et al.  Lyapunov Function and Local Feedback Boundary Stabilization of the Navier--Stokes Equations , 2009, SIAM J. Control. Optim..

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Irena Lasiecka,et al.  Tangential boundary stabilization of Navier-Stokes equations , 2006 .

[9]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[10]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[11]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[12]  R. Lehoucq,et al.  Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier-Stokes equations , 1997 .

[13]  Danny C. Sorensen,et al.  Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).

[14]  Luca Dedè,et al.  Optimal flow control for Navier–Stokes equations: drag minimization , 2007 .

[15]  Jean-Marie Buchot,et al.  An invariant subspace method for large-scale algebraic Riccati equation , 2010 .

[16]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[17]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.

[18]  M. Gunzburger,et al.  Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses , 1992 .

[19]  A. Fursikov,et al.  Stabilization for the 3D Navier-Stokes system by feedback boundary control , 2003 .

[20]  Takéo Takahashi,et al.  Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier-Stokes System , 2011, SIAM J. Control. Optim..

[21]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Large Algebraic Riccati Equations , 2003, Numerical Algorithms.

[22]  Jie Shen,et al.  On error estimates of the penalty method for unsteady Navier-Stokes equations , 1995 .

[23]  Medhi Badrat,et al.  Méthode de pénalisation pour le contrôle frontière des équations de Navier-Stokes , 2011 .

[24]  K. A. Cliffe,et al.  Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations , 1993, Adv. Comput. Math..

[25]  Volker Mehrmann,et al.  Numerical methods in control , 2000 .

[27]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[28]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[29]  Jean-Pierre Raymond,et al.  A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions , 2003 .

[30]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[31]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[32]  Jean-Pierre Raymond,et al.  Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations , 2007 .

[33]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[34]  T. Bewley,et al.  Minimal-energy control feedback for stabilization of bluff-body wakes based on unstable open-loop eigenvalues and left eigenvectors , 2007 .

[35]  Omar Ghattas,et al.  Optimal Control of Two- and Three-Dimensional Incompressible Navier-Stokes Flows , 1997 .

[36]  PENALIZED NAVIER-STOKES EQUATIONS WITH INHOMOGENEOUS BOUNDARY CONDITIONS , 1996 .

[37]  Khalide Jbilou,et al.  An Arnoldi based algorithm for large algebraic Riccati equations , 2006, Appl. Math. Lett..

[38]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[39]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[40]  Miroslav Krstic,et al.  Flow Control by Feedback: Stabilization and Mixing , 2010 .

[41]  Confined three-dimensional stability analysis of the cylinder wake. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[43]  Thomas Slawig,et al.  PDE-constrained control using Femlab – Control of the Navier–Stokes equations , 2006, Numerical Algorithms.

[44]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[45]  V. Mehrmann,et al.  A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .

[46]  S. Kesavan,et al.  On a degenerate Riccati equation , 2009 .

[47]  R. Joslin Aircraft laminar flow control , 2000 .

[48]  Ralph Byers,et al.  Hamiltonian and symplectic algorithms for the algebraic riccati equation , 1983 .

[49]  On the approximation of the spectrum of the Stokes operator , 1989 .

[50]  Peter Benner,et al.  Numerical solution of large‐scale Lyapunov equations, Riccati equations, and linear‐quadratic optimal control problems , 2008, Numer. Linear Algebra Appl..

[51]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[52]  Peter Benner,et al.  Stabilization of Incompressible Flow Problems by Riccati-based Feedback , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[53]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[54]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[55]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[56]  Enrique S. Quintana-Ortí,et al.  Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function , 2007, Numerical Algorithms.

[57]  F. Hecht,et al.  A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .

[58]  N. Higham Functions Of Matrices , 2008 .

[59]  Jean-Pierre Raymond,et al.  Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition , 2010 .

[60]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[61]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[62]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[63]  Jean-Pierre Raymond,et al.  Nonlinear feedback stabilization of a two-dimensional Burgers equation , 2010 .

[64]  Thomas Bewley,et al.  The decay of stabilizability with Reynolds number in a linear model of spatially developing flows , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[65]  Jean-Pierre Raymond,et al.  Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers , 2010 .

[66]  Ruth F. Curtain,et al.  The Hilbert-Schmidt property of feedback operators , 2007 .

[67]  M. Heyouni,et al.  AN EXTENDED BLOCK ARNOLDI ALGORITHM FOR LARGE-SCALE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATI ON ∗ , 2008 .

[68]  Jean-Pierre Raymond,et al.  Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions , 2007 .

[69]  Laetitia Thevenet Lois de feedback pour le contrôle d'écoulements , 2009 .

[70]  Roland Glowinski,et al.  Exact and Approximate Controllability for Distributed Parameter Systems: Index of subjects , 2008 .

[71]  R. B. Lehoucq,et al.  Regularization and stabilization of discrete saddle-point variational problems. , 2006 .

[72]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[73]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[74]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[75]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[76]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[77]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[78]  Mehdi Badra,et al.  Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system , 2009 .

[79]  Roberto Triggiani,et al.  Internal stabilization of Navier-Stokes equations with finite-dimensional controllers , 2004 .

[80]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[81]  V. Mehrmann,et al.  Stabilization of large linear systems , 1998 .

[82]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[83]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[84]  Peter Benner,et al.  On the Parameter Selection Problem in the Newton-ADI Iteration for Large Scale Riccati Equations , 2007 .