An Efficient Particle Swarm Optimization Approach Based on Cultural Algorithm Applied to Mechanical Design

Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of the survival of the fittest individual. Based on the swarm intelligence theory, this paper discusses the use of PSO approaches using an operator and based on the Gaussian probability distribution function as a population space of a cultural algorithm, called cultural Gaussian PSO (GPSO-CA). Cultural algorithms are mechanisms that incorporate domain knowledge obtained during the evolutionary process, which increase the efficiency of the search process. These approaches are employed in a well-studied continuous optimization problem of mechanical engineering design.

[1]  Robert G. Reynolds,et al.  Cultural swarms: modeling the impact of culture on social interaction and problem solving , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[2]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[3]  Zhenya He,et al.  Swarm directions embedded in fast evolutionary programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[4]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[5]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[6]  Robert G. Reynolds,et al.  Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[8]  R. Reynolds,et al.  Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Robert G. Reynolds,et al.  Using Cultural Algorithms to improve knowledge base maintainability , 2001 .

[10]  Leandro dos Santos Coelho,et al.  Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[11]  Chilukuri K. Mohan,et al.  Particle swarm optimization with adaptive linkage learning , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[12]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[13]  R. Reynolds AN INTRODUCTION TO CULTURAL ALGORITHMS , 2008 .

[14]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[15]  Chun Zhang,et al.  Mixed-discrete nonlinear optimization with simulated annealing , 1993 .

[16]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[17]  A. Stacey,et al.  Particle swarm optimization with mutation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[19]  Carlos A. Coello Coello,et al.  Culturizing differential evolution for constrained optimization , 2004, Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004..

[20]  Gary B. Lamont,et al.  Visualizing particle swarm optimization - Gaussian particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[21]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[22]  L. Coelho,et al.  Predictive Controller Tuning Using Modified Particle Swarm Optimization Based on Cauchy and Gaussian Distributions , 2005 .

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[25]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[26]  Keiichiro Yasuda,et al.  Adaptive particle swarm optimization , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[27]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[29]  Robert G. Reynolds,et al.  Cultural swarms: assessing the impact of culture on social interaction and problem solving , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[30]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[31]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).