A class I fructose-1,6-bisphosphate aldolase is associated with salt stress tolerance in a halotolerant cyanobacterium halothece sp. PCC 7418.

[1]  H. Kageyama,et al.  Expression of a stress-responsive gene cluster for mycosporine-2-glycine confers oxidative stress tolerance in Synechococcus elongatus PCC7942. , 2019, FEMS microbiology letters.

[2]  A. Charbit,et al.  The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella , 2017, Nature Communications.

[3]  H. Kageyama,et al.  Efficient Bioproduction of Mycosporine-2-glycine, Which Functions as Potential Osmoprotectant, using Escherichia coli Cells , 2017 .

[4]  J. G. Mendonça Filho,et al.  Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study , 2017, Front. Microbiol..

[5]  Peter Lindblad,et al.  Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. , 2016, Metabolic engineering.

[6]  H. Kageyama,et al.  Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. , 2015, FEMS microbiology letters.

[7]  Kelly M. Wetmore,et al.  The essential gene set of a photosynthetic organism , 2015, Proceedings of the National Academy of Sciences.

[8]  Ataur R. Katebi,et al.  Aldolases Utilize Different Oligomeric States To Preserve Their Functional Dynamics. , 2015, Biochemistry.

[9]  N. Oldfield,et al.  Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: 'ill met by moonlight'. , 2014, Biochemical Society transactions.

[10]  H. Kageyama,et al.  Identification and Upregulation of Biosynthetic Genes Required for Accumulation of Mycosporine-2-Glycine under Salt Stress Conditions in the Halotolerant Cyanobacterium Aphanothece halophytica , 2013, Applied and Environmental Microbiology.

[11]  N. Galanti,et al.  Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins. , 2012, Gene.

[12]  M. Inui,et al.  Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. , 2012, Journal of experimental botany.

[13]  S. Cha-um,et al.  An Alkaline Phosphatase/Phosphodiesterase, PhoD, Induced by Salt Stress and Secreted Out of the Cells of Aphanothece halophytica, a Halotolerant Cyanobacterium , 2011, Applied and Environmental Microbiology.

[14]  H. Kageyama,et al.  Halotolerant Cyanobacterium Aphanothece halophytica Contains an Na+-dependent F1F0-ATP Synthase with a Potential Role in Salt-stress Tolerance* , 2011, The Journal of Biological Chemistry.

[15]  D. Ala'aldeen,et al.  The moonlighting protein fructose‐1, 6‐bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion , 2010, Molecular microbiology.

[16]  Weimin Ma,et al.  Increased activity of the tandem fructose-1,6-bisphosphate aldolase, triosephosphate isomerase and fructose-1,6-bisphosphatase enzymes in Anabaena sp. strain PCC 7120 stimulates photosynthetic yield , 2008, Journal of Applied Phycology.

[17]  A. M. Kayastha,et al.  Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung beans (Vigna radiata). , 2005, Phytochemistry.

[18]  Y. Kanesaki,et al.  Gene Expression Profiling Reflects Physiological Processes in Salt Acclimation of Synechocystis sp. Strain PCC 68031 , 2004, Plant Physiology.

[19]  Hiroshi Yamamoto,et al.  Purification and characterization of class-I and class-II fructose-1,6-bisphosphate aldolases from the cyanobacterium Synechocystis sp. PCC 6803. , 2003, Plant & cell physiology.

[20]  K. Aoki,et al.  Isolation and Functional Characterization ofN-Methyltransferases That Catalyze Betaine Synthesis from Glycine in a Halotolerant Photosynthetic Organism Aphanothece halophytica * , 2003, The Journal of Biological Chemistry.

[21]  T. Hibino,et al.  Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Y. Kanesaki,et al.  Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. , 2002, Biochemical and biophysical research communications.

[23]  H. Brinkmann,et al.  Archaeal Fructose-1,6-bisphosphate Aldolases Constitute a New Family of Archaeal Type Class I Aldolase* , 2001, The Journal of Biological Chemistry.

[24]  A. Berry,et al.  Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. , 2000, European journal of biochemistry.

[25]  I. Jado,et al.  Cloning, Sequencing, and Chromosomal Location of a Putative Class-II Aldolase Gene from Streptococcus pneumoniae , 1999, Current Microbiology.

[26]  A. Ashcroft,et al.  The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. , 1998, The Biochemical journal.

[27]  M. Stitt,et al.  A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. , 1998, The Plant journal : for cell and molecular biology.

[28]  A. Berry,et al.  Identification of zinc‐binding ligands in the Class II fructose‐ 1,6‐bisphosphate aldolase of Escherichia coli , 1993, FEBS letters.

[29]  A. Grossman,et al.  Identification and Purification of a Derepressible Alkaline Phosphatase from Anacystis nidulans R2. , 1988, Plant physiology.

[30]  A. van der Ende,et al.  A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. , 1983, Plasmid.

[31]  A. Walsby,et al.  The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  M. Pai,et al.  Effect of oxygen tension on the aldolases of Mycobacterium tuberculosis H37 Rv , 1974, FEBS letters.

[33]  R. Perham,et al.  Purification and characterization of two fructose diphosphate aldolases from Escherichia coli (Crookes' strain). , 1973, The Biochemical journal.

[34]  H. Kageyama,et al.  Extraction and Quantification of Alkanes in Cyanobacteria , 2015 .

[35]  A. Oren Salts and Brines , 2012 .