Architectonic subdivision of the human orbital and medial prefrontal cortex

The structure of the human orbital and medial prefrontal cortex (OMPFC) was investigated using five histological and immunohistochemical stains and was correlated with a previous analysis in macaque monkeys [Carmichael and Price ( 1994 ) J. Comp. Neurol. 346:366–402]. A cortical area was recognized if it was distinct with at least two stains and was found in similar locations in different brains. All of the areas recognized in the macaque OMPFC have counterparts in humans. Areas 11, 13, and 14 were subdivided into areas 11m, 11l, 13a, 13b, 13m, 13l, 14r, and 14c. Within area 10, the region corresponding to area 10m in monkeys was divided into 10m and 10r, and area 10o (orbital) was renamed area 10p (polar). Areas 47/12r, 47/12m, 47/12l, and 47/12s occupy the lateral orbital cortex, corresponding to monkey areas 12r, 12m, 12l, and 12o. The agranular insula (areas Iam, Iapm, Iai, and Ial) extends onto the caudal orbital surface and into the horizontal ramus of the lateral sulcus. The growth of the frontal pole in humans has pushed area 25 and area 32pl, which corresponds to the prelimbic area 32 in Brodmann's monkey brain map, caudal and ventral to the genu of the corpus callosum. Anterior cingulate areas 24a and 24b also extend ventral to the genu of the corpus callosum. Area 32ac, corresponding to the dorsal anterior cingulate area 32 in Brodmann's human brain map, is anterior and dorsal to the genu. The parallel organization of the OMPFC in monkeys and humans allows experimental data from monkeys to be applied to studies of the human cortex. J. Comp. Neurol. 460:425–449, 2003. © 2003 Wiley‐Liss, Inc.

[1]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[2]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[3]  K. Lashley,et al.  The cytoarchitecture of the cerebral cortex of ateles: A critical examination of architectonic studies , 1946, The Journal of comparative neurology.

[4]  E. Beck A cytoarchitectural investigation into the boundaries of cortical areas 13 and 14 in the human brain. , 1949, Journal of anatomy.

[5]  Essay on the cerebral cortex. , 1951 .

[6]  J. Price,et al.  The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat , 1977, The Journal of comparative neurology.

[7]  M. Mesulam,et al.  Insula of the old world monkey. III: Efferent cortical output and comments on function , 1982, The Journal of comparative neurology.

[8]  C. Saper,et al.  Convergence of autonomic and limbic connections in the insular cortex of the rat , 1982, The Journal of comparative neurology.

[9]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[10]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[11]  M. Bear,et al.  An investigation of cholinergic circuitry in cat striate cortex using acetylcholinesterase histochemistry , 1985, The Journal of comparative neurology.

[12]  L. Otvos,et al.  Identification of the major multiphosphorylation site in mammalian neurofilaments. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[14]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[15]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[16]  R. Roth,et al.  Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin , 1989, The Journal of comparative neurology.

[17]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[18]  P. Somogyi,et al.  Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. , 1990, Brain : a journal of neurology.

[19]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[20]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[21]  M M Mesulam,et al.  Acetylcholinesterase‐rich neurons of the human cerebral cortex: Cytoarchitectonic and ontogenetic patterns of distribution , 1991, The Journal of comparative neurology.

[22]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[23]  M. Raichle,et al.  A functional anatomical study of unipolar depression , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  P. Hof,et al.  Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. , 1992, Cerebral cortex.

[25]  Brent A. Vogt,et al.  Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors , 1993 .

[26]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[27]  J DeFelipe,et al.  A study of SMI 32‐stained pyramidal cells, parvalbumin‐immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex , 1994, The Journal of comparative neurology.

[28]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[29]  E. Rolls,et al.  Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B. Vogt,et al.  Human cingulate cortex: Surface features, flat maps, and cytoarchitecture , 1995, The Journal of comparative neurology.

[31]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[32]  J. Morrison,et al.  Human orbitofrontal cortex: Cytoarchitecture and quantitative immunohistochemical parcellation , 1995, The Journal of comparative neurology.

[33]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[34]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[35]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[36]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[37]  J. Morrison,et al.  Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey , 1996, The Journal of comparative neurology.

[38]  E. Rolls,et al.  The Orbitofrontal Cortex , 2019 .

[39]  D. Zald,et al.  Anatomy and function of the orbital frontal cortex, I: anatomy, neurocircuitry; and obsessive-compulsive disorder. , 1996, The Journal of neuropsychiatry and clinical neurosciences.

[40]  S. Carmichael,et al.  Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. , 1996, The Journal of comparative neurology.

[41]  Alan C. Evans,et al.  Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. , 1996, Cerebral cortex.

[42]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[43]  J. Morrison,et al.  Neurofilament and calcium‐binding proteins in the human cingulate cortex , 1997, The Journal of comparative neurology.

[44]  H A Drury,et al.  Functional specializations in human cerebral cortex analyzed using the visible man surface‐based atlas , 1997, Human brain mapping.

[45]  M. Raichle,et al.  Subgenual prefrontal cortex abnormalities in mood disorders , 1997, Nature.

[46]  B. Kushner Descartes' error. , 1998, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[47]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[48]  K Zilles,et al.  Limbic frontal cortex in hominoids: a comparative study of area 13. , 1998, American journal of physical anthropology.

[49]  J. Price,et al.  Prefrontal cortical projections to the hypothalamus in Macaque monkeys , 1998, The Journal of comparative neurology.

[50]  S Zeki,et al.  The autonomy of the visual systems and the modularity of conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  J. Price,et al.  Glial reduction in the subgenual prefrontal cortex in mood disorders. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Price,et al.  Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys , 1998, The Journal of comparative neurology.

[53]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[54]  L. Parsons,et al.  Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. , 1999, The American journal of psychiatry.

[55]  P. Jerabek,et al.  Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response , 2000, Biological Psychiatry.

[56]  E. Gordon,et al.  The neural correlates of orienting: An integration of fMRI and skin conductance orienting , 2000, Neuroreport.

[57]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[58]  H. Critchley,et al.  Neural Activity Relating to Generation and Representation of Galvanic Skin Conductance Responses: A Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[59]  J. Hollerman,et al.  Reward processing in primate orbitofrontal cortex and basal ganglia. , 2000, Cerebral cortex.

[60]  W. Drevets Neuroimaging studies of mood disorders , 2000, Biological Psychiatry.

[61]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[62]  J. Price,et al.  Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks , 2000, The Journal of comparative neurology.

[63]  K. Hikosaka,et al.  Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. , 2000, Cerebral cortex.

[64]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[65]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[66]  R. Dolan,et al.  The neural basis of mood-congruent processing biases in depression. , 2002, Archives of general psychiatry.

[67]  Peter A. Bandettini,et al.  Task-Independent Functional Brain Activity Correlation with Skin Conductance Changes: An fMRI Study , 2002, NeuroImage.

[68]  G. Shulman,et al.  Persistence and brain circuitry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.