A theoretical study of the interaction of water molecules with the Cu(100), Ag(100) and Au(100) surfaces

[1]  J. Gomes,et al.  Interaction of halide ions with copper: the DFT approach , 1996 .

[2]  V. Barone Structure, Thermochemistry, and Magnetic Properties of Binary Copper Carbonyls by a Density-Functional Approach , 1995 .

[3]  V. Barone Validation of self-consistent hybrid approaches for the study of transition metal complexes. NiCO and CuCO as case studies , 1995 .

[4]  P. Siegbahn,et al.  THE INTERACTION OF AMMONIA, CARBONYL, ETHYLENE AND WATER WITH THE COPPER AND SILVER DIMERS , 1994 .

[5]  H. Ogasawara,et al.  Water adsorption on Pt(111): from isolated molecule to three-dimensional cluster , 1994 .

[6]  K. Heinzinger,et al.  Quantum chemical study of the adsorption of an H2O molecule on an uncharged mercury surface , 1994 .

[7]  N. Pangher,et al.  Structure determination of water chemisorbed on Ni(110) by use of X-ray absorption fine-structure measurements , 1994 .

[8]  E. Baerends,et al.  Slab versus cluster approach for chemisorption studies. CO on Cu (100) , 1993 .

[9]  T. Ellis,et al.  Water adsorption on Cu(100): The effect of defects , 1993 .

[10]  B. Beden,et al.  Synchrotron infrared spectroscopy of H[sub 2]O adsorbed on polycrystalline gold , 1993 .

[11]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[12]  J. D. Porter,et al.  Ordering of liquid water at metal surfaces in tunnel junction devices , 1993 .

[13]  W. O'grady,et al.  In situ far-infrared evidence for a potential dependence of silver–water interactions , 1993 .

[14]  G. M. Zhidomirov,et al.  Non-empirical cluster model calculations of the adsorption of H2O on Ni(111) , 1992 .

[15]  L. Dubois,et al.  Water adsorption on Cu(111): evidence for Volmer—Weber film growth , 1991 .

[16]  Griffiths,et al.  Reorientation of chemisorbed water on Ni(110) by hydrogen bonding to second layer. , 1991, Physical review letters.

[17]  L. Curtiss,et al.  Bonding of a water molecule to a copper atom , 1991 .

[18]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[19]  J. L. Whitten,et al.  The adsorption of water and hydroxyl on Ni(lll) , 1989 .

[20]  R. Nazmutdinov,et al.  Water adsorption—quantum chemical approach , 1989 .

[21]  G. Estiu,et al.  Theoretical study of the interaction of a single water molecule with Pt(111) and Pt(100) clusters. Influence of the applied potential , 1988 .

[22]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[23]  C. Bauschlicher How important is correlation in the description of the Ni-H2O interaction , 1987 .

[24]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[25]  Müller,et al.  Reversible H2O adsorption on Pt(111)+K: Work function changes and molecular orientation. , 1987, Physical review letters.

[26]  G. Pacchioni,et al.  Bonding of water ligands to copper and nickel atoms: crucial role of intermolecular electron correlation , 1986 .

[27]  M. Blomberg,et al.  The binding in neutral transition metal-water complexes , 1986 .

[28]  Lloyd,et al.  Vibrational analysis of water adsorbed on Pd(100): Sensitivity of the isotope shifts of bending modes to the bonding site. , 1986, Physical review. B, Condensed matter.

[29]  C. Bauschlicher Transition metal-ligand bonding. II , 1986 .

[30]  S. Saha,et al.  Structure and reactions of H2O on clean and oxygen-covered Ni(111) surfaces , 1985 .

[31]  C. Bauschlicher H2O/Ni(100) and NH3/Ni(100): A computational approach , 1985 .

[32]  Landman,et al.  Molecular-orbital-self-consistent-field cluster model of H2O adsorption on copper. , 1985, Physical review. B, Condensed matter.

[33]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[34]  W. Lorenz,et al.  Quantum chemical studies of the chemisorption of water and of unhydrated and hydrated halide ions on mercury , 1984 .

[35]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[36]  S. Andersson,et al.  Adsorption of water monomers on Cu(100) and Pd(100) at low temperatures , 1984 .

[37]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[38]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[39]  J. Paul,et al.  Cluster calculations of the H2O/Pt(111) system , 1983 .

[40]  F. Himpsel,et al.  Electronic structure of hydrogen-bonded H 2 O , 1983 .

[41]  G. Valette Hydrophilicity of metal surfaces: Silver, gold and copper electrodes , 1982 .

[42]  B. C. Khanra Cluster molecular-orbital study of the chemisorption of a water molecule on ruthenium(001) , 1981 .

[43]  A. Anderson Reactions and structures of water on clean and oxygen covered Pt(111) and Fe(100) , 1981 .

[44]  K. Bennemann,et al.  Study of water adsorption on metal surfaces , 1980 .

[45]  M. W. Roberts,et al.  Hydroxylation and dehydroxylation at Cu(III) surfaces , 1979 .

[46]  A. Hubbard,et al.  Quantum mechanical description of electrode reactions , 1976 .

[47]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[48]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: II. Potentials of zero charge and “electrochemical” work functions , 1971 .