On group-divisible designs with block size four and group-type 6um1

We investigate the spectrum for {4}-GDDs of type gum1. Wedetermine, for each even g, all values of m for which a {4}-GDD of typegum1 exists, for every ‘fourth’ value of u. We similarlydetermine, for each odd g ≠ 11 or 17, all values of m for which a {4}-GDD of typegum1 exists, for every ‘third’ value of u. Finally, weestablish, up to a finite number of values of u, the spectrum for {4}-GDDs of typegum1 where gu is even, g ∉ {11, 17}.

[1]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[2]  Douglas R. Stinson,et al.  Frames for Kirkman triple systems , 1987, Discret. Math..

[3]  Gennian Ge,et al.  Group Divisible Designs with Block Size Four and Group Type gum1 with Minimum m , 2005, Des. Codes Cryptogr..

[4]  Donald L. Kreher,et al.  Small group-divisible designs with block size four , 1997 .

[5]  Gennian Ge,et al.  Mandatory representation designs MRD({4, k};v) with k=1 mod 3 , 2004, Discret. Math..

[6]  Charles J. Colbourn,et al.  Modified group divisible designs with block size four , 2000, Discret. Math..

[7]  Ahmed M. Assaf,et al.  Modified group divisible designs with block size 4 and λ>1 , 1999, Australas. J Comb..

[8]  Shen Hao,et al.  FURTHER RESULTS ON THE EXISTENCE OF LABELED RESOLVABLE BLOCK DESIGNS , 1999 .

[9]  Hao Shen,et al.  On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12 , 2003, Discret. Math..

[10]  W. H. Mills,et al.  Resolvable minimum coverings with quadruples , 1998 .

[11]  Douglas R. Stinson,et al.  On combinatorial designs with subdesigns , 1989, Discret. Math..

[12]  Walter D. Wallis,et al.  Kirkman triple systems and their generalizations: a survey , 2003 .

[13]  Rolf S. Rees,et al.  Group‐divisible designs with block size k having k + 1 groups, for k = 4, 5 , 2000 .

[14]  G. Ge,et al.  On Group-Divisible Designs with Block Size Four and Group-Type gum1 , 2002, Des. Codes Cryptogr..

[15]  Gennian Ge,et al.  Group-Divisible Designs with Block Size Four and Group-Type gum1 with m as Large or as Small as Possible , 2002, J. Comb. Theory, Ser. A.

[16]  Dean G. Hoffman,et al.  A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.