The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance

In this paper we investigate the real gas flows which occur within Organic Rankine Cycle (ORC) turbines. A new method for the design of nozzles operating with dense gases is discussed, and applied to the case of a high pressure ratio turbine vane. A Navier-Stokes method which uses equations of states for a variety of working fluids typical of ORC turbines is then applied to the turbine vanes to determine the vane performance. The results suggest that the choice of working fluid has a significant influence on the turbine efficiency.

[1]  N. Lai,et al.  Working fluids for high-temperature organic Rankine cycles , 2007 .

[2]  Roland Span,et al.  Equations of State for Technical Applications. II. Results for Nonpolar Fluids , 2003 .

[3]  P. A. Thompson,et al.  A Fundamental Derivative in Gasdynamics , 1971 .

[4]  Pietro Marco Congedo,et al.  Numerical investigation of dense-gas effects in turbomachinery , 2011 .

[5]  I. M. Hall TRANSONIC FLOW IN TWO-DIMENSIONAL AND AXIALLY-SYMMETRIC NOZZLES , 1962 .

[6]  Tzu-Chen Hung,et al.  A study of organic working fluids on system efficiency of an ORC using low-grade energy sources , 2010 .

[7]  Brian Argrow,et al.  Supersonic minimum length nozzle design for dense gases , 1993 .

[8]  Brian Argrow,et al.  Nonclassical gasdynamic region of selected fluorocarbons , 2005 .

[9]  Stefano Rebay,et al.  Real-gas effects in Organic Rankine Cycle turbine nozzles , 2008 .

[10]  Stefano Rebay,et al.  Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders , 2010 .

[11]  H. E. Rohlik,et al.  Recent radial turbine research at the NASA Lewis Research Center. , 1972 .

[12]  Pietro Marco Congedo,et al.  Inviscid and viscous aerodynamics of dense gases , 2007, Journal of Fluid Mechanics.

[13]  Layne T. Watson,et al.  Supersonic flows of dense gases in cascade configurations , 1997, Journal of Fluid Mechanics.

[14]  H. E. Rohlik Analytical determination of radial inflow turbine design geometry for maximum efficiency , 1968 .

[15]  M. Cramer,et al.  Prandtl-Meyer function for dense gases , 1992 .

[16]  Alberto Guardone,et al.  Erratum to "On the computation of the fundamental derivative of gas dynamics using equations of state" (Fluid Phase Equilibr. 286 (1) (2009) 43-54) , 2010 .

[17]  Timo Siikonen,et al.  Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring , 2002 .

[18]  Alberto Guardone,et al.  Siloxanes : A new class of candidate Bethe-Zel’dovich-Thompson fluids , 2007 .

[19]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[20]  Alberto Guardone,et al.  Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model , 2006 .

[21]  Ibrahim Dincer,et al.  Performance investigation of high-temperature heat pumps with various BZT working fluids , 2009 .

[22]  Pietro Marco Congedo,et al.  Analysis and Optimization of Dense gas flows: Application to organic Rankine cycles turbines , 2007 .

[23]  Takahisa Yamamoto,et al.  Design and testing of the Organic Rankine Cycle , 2001 .

[24]  Teemu Turunen-Saaresti,et al.  Computational Study of a High-Expansion Ratio Radial Organic Rankine Cycle Turbine Stator , 2010 .

[25]  G. Angelino,et al.  Organic Working Fluid Optimization for Space Power Cycles , 1991 .

[26]  Phoolan Prasad,et al.  Transonic flow of a fluid with positive and negative nonlinearity through a nozzle , 1991 .

[27]  Alberto Guardone,et al.  The influence of molecular complexity on expanding flows of ideal and dense gases , 2009 .

[28]  Roland Span,et al.  Short Fundamental Equations of State for 20 Industrial Fluids , 2006 .