Efficient on-the-fly interpolation technique for Bethe-Salpeter calculations of optical spectra

[1]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[2]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  R. Haydock The recursive solution of the Schrödinger equation , 1980 .

[5]  Cappellini,et al.  Model dielectric function for semiconductors. , 1993, Physical review. B, Condensed matter.

[6]  Shirley Optimal basis sets for detailed Brillouin-zone integrations. , 1996, Physical review. B, Condensed matter.

[7]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[8]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[9]  Eric L. Shirley,et al.  Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation , 1998 .

[10]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[11]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[12]  Eric L. Shirley,et al.  Ab initio calculation of ε 2 ( ω ) including the electron-hole interaction: Application to GaN and CaF 2 , 1999 .

[13]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[14]  Mebarek Alouani,et al.  Local-field and excitonic effects in the calculated optical properties of semiconductors from first-principles , 2001 .

[15]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[16]  Angel Rubio,et al.  Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. , 2003, Physical review letters.

[17]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[18]  Georg Kresse,et al.  Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .

[19]  F. Fuchs,et al.  Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states , 2008, 0805.0659.

[20]  Andrea Marini,et al.  Ab initio finite-temperature excitons. , 2007, Physical review letters.

[21]  A. Marini,et al.  Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.

[22]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[23]  M. Gruning,et al.  Implementation and testing of Lanczos-based algorithms for Random-Phase Approximation eigenproblems , 2011, 1102.3909.

[24]  Andrea Marini,et al.  Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation , 2012, 1209.1509.

[25]  Friedhelm Bechstedt,et al.  First-principles optical spectra for F centers in MgO. , 2012, Physical review letters.

[26]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[27]  Georg Kresse,et al.  Optical and electronic properties of Si 3 N 4 and α -SiO 2 , 2012 .

[28]  Martin A. Green,et al.  Improved value for the silicon free exciton binding energy , 2013 .

[29]  Yannick Gillet,et al.  First-principles study of excitonic effects in Raman intensities , 2013, 1309.1850.

[30]  Eric L. Shirley,et al.  Efficient implementation of core-excitation Bethe-Salpeter equation calculations , 2015, Comput. Phys. Commun..

[31]  Georg Kresse,et al.  Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization , 2015 .

[32]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .