Micro-optofluidic Lenses: A review.

This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field.

[1]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[2]  Ki-Hun Jeong,et al.  Tunable microdoublet lens array , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[3]  Uriel Levy,et al.  Tunable optofluidic devices , 2008 .

[4]  B. J. Eggleton,et al.  Optofluidics: a novel generation of reconfigurable and adaptive compact architectures , 2008 .

[5]  David R. Selviah,et al.  Variable focal length microlenses , 2000 .

[6]  Shin-Tson Wu,et al.  Tunable-focus liquid microlens array using dielectrophoretic effect. , 2008, Optics express.

[7]  David Bull,et al.  Proceedings of SPIE - The International Society for Optical Engineering , 2007 .

[8]  Shin-Tson Wu,et al.  Adaptive dielectric liquid lens. , 2008, Optics express.

[9]  Nam-Trung Nguyen,et al.  Biconcave micro-optofluidic lens with low-refractive-index liquids. , 2009, Optics letters.

[10]  Fabrication and characterization of optofluidic flexible meniscus―biconvex lens system , 2009 .

[11]  George M. Whitesides,et al.  Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer , 1995 .

[12]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[13]  George M. Whitesides,et al.  Optical waveguiding in suspensions of dielectric particles. , 2005 .

[14]  J. Yeh,et al.  Variable focus dielectric liquid droplet lens. , 2006, Optics express.

[15]  Tian Fook Kong,et al.  A micro optofluidic splitter and switch based on hydrodynamic spreading , 2007 .

[16]  George M. Whitesides,et al.  Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels , 2006 .

[17]  Jin-Woo Choi,et al.  A planar lens based on the electrowetting of two immiscible liquids , 2008 .

[18]  V. Lien,et al.  Microspherical surfaces with predefined focal lengths fabricated using microfluidic capillaries , 2003 .

[19]  De-Ying Zhang,et al.  Fluidic adaptive lens with high focal length tunability , 2003 .

[20]  Seung-Wan Lee,et al.  Microfluidic design and fabrication of wafer-scale varifocal liquid lens , 2009, Optical Engineering + Applications.

[21]  Weisong Wang,et al.  Variable-focusing microlens with microfluidic chip , 2004 .

[22]  Hamish C. Hunt,et al.  Optofluidic integration for microanalysis , 2007, Microfluidics and nanofluidics.

[23]  Jinjie Shi,et al.  Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. , 2009, Lab on a chip.

[24]  Jinjie Shi,et al.  Tunable optofluidic microlens through active pressure control of an air–liquid interface , 2010 .

[25]  Nasser Kehtarnavaz,et al.  Proceedings of SPIE - The International Society for Optical Engineering , 1991 .

[26]  R. Robinson,et al.  The Diffusion Coefficient of Calcium Chloride in Aqueous Solution at 25 , 1952 .

[27]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[28]  Hans Zappe,et al.  A MEMS-based variable micro-lens system , 2006 .

[29]  Suz-Kai Hsiung,et al.  Microcapillary electrophoresis chips utilizing controllable micro‐lens structures and buried optical fibers for on‐line optical detection , 2008, Electrophoresis.

[30]  Susumu Sato,et al.  Applications of Liquid Crystals to Variable-Focusing Lenses , 1999 .

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[33]  Yu-Hwa Lo,et al.  Fluidic adaptive lens of transformable lens type , 2004 .

[34]  Amir Hirsa,et al.  Electrochemically activated adaptive liquid lens , 2005 .

[35]  Chau Fook Siong,et al.  A tunable Shack–Hartmann wavefront sensor based on a liquid-filled microlens array , 2008 .

[36]  A. Asundi,et al.  Modelling and optimization of micro optofluidic lenses. , 2009, Lab on a chip.

[37]  Hongrui Jiang,et al.  Tunable liquid microlens actuated by infrared light-responsive hydrogel , 2008 .

[38]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[39]  George M. Whitesides,et al.  Diffusion-controlled optical elements for optofluidics , 2005 .

[40]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[41]  Hongbin Yu,et al.  A liquid-filled tunable double-focus microlens. , 2009, Optics express.

[42]  Yong-Kweon Kim,et al.  Proposal of human eye's crystalline lens-like variable focusing lens , 1999 .

[43]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[44]  Mangilal Agarwal,et al.  Polymer-based variable focal length microlens system , 2004 .

[45]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[46]  Liang Dong,et al.  Selective Formation and Removal of Liquid Microlenses at Predetermined Locations Within Microfluidics Through Pneumatic Control , 2008, Journal of Microelectromechanical Systems.

[47]  Yeshaiahu Fainman,et al.  Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. , 2005, Optics express.

[48]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[49]  Tony Jun Huang,et al.  Hydrodynamically tunable optofluidic cylindrical microlens. , 2007, Lab on a chip.

[50]  Individual nanoparticle detection in liquids by thermal lens microscopy and improvement of detection efficiency using a 1-microm microfluidic channel. , 2009, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[51]  Seung S. Lee,et al.  Focal tunable liquid lens integrated with an electromagnetic actuator , 2007 .

[52]  Michael Rosenauer,et al.  3D fluidic lens shaping--a multiconvex hydrodynamically adjustable optofluidic microlens. , 2009, Lab on a chip.

[53]  J. Yeh,et al.  Dielectrically actuated liquid lens. , 2007, Optics express.

[55]  Different curvatures of tunable liquid microlens via the control of laminar flow rate , 2008 .

[56]  Andrew G. Glen,et al.  APPL , 2001 .

[57]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[58]  Sally E. Day,et al.  Switchable fiber coupling using variable-focal-length microlenses , 2001 .

[59]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[60]  Nam-Trung Nguyen,et al.  A micro optofluidic lens with short focal length , 2009 .