Interactive approach in multicriteria analysis based on stochastic dominance

The paper considers a discrete stochastic multicrite- ria problem. This problem can be defined by a finite set of actions A, a set of attributes X and a set of evaluations E. It is assumed that the performance probability distributions for each action on each at- tribute are known. A new procedure for such a problem is proposed. It is based on two concepts: stochastic dominance and interactive approach. Stochastic dominance is employed for comparing evalua- tions of actions with respect to attributes. The STEM methodology is employed in the dialogue procedure between decision maker and decision model. In each step a candidate action ai is generated. The decision maker examines evaluations of ai with respect to attributes and selects the one that satisfies him/her. Then the decision maker defines the limit of concessions, which can be made on average eval- uations with respect to this attribute. The procedure continues until a satisfactory action is found.

[1]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[2]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[3]  Josef Hadar,et al.  Rules for Ordering Uncertain Prospects , 1969 .

[4]  H. Levy,et al.  Efficiency analysis of choices involving risk , 1969 .

[5]  Elias N. Houstis,et al.  Multiobjective decisions analysis for engineering systems , 1980, Comput. Oper. Res..

[6]  Peter Nijkamp,et al.  Interactive multiple goal programming , 1981 .

[7]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[8]  Eric Jacquet-Lagrèze Modelling Preferences among Distributions Using Fuzzy Relations , 1977 .

[9]  Ralph E. Steuer,et al.  InterQuad: An interactive quad tree based procedure for solving the discrete alternative multiple criteria problem , 1996 .

[10]  G. Whitmore,et al.  Third-Degree Stochastic Dominance , 1970 .

[11]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[12]  Ilan Vertinsky,et al.  Stochastic Dominance Rules for Multi-attribute Utility Functions , 1978 .

[13]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[14]  Stanley Zionts,et al.  A multiple criteria method for choosing among discrete alternatives , 1981 .

[15]  H. Markowitz The Utility of Wealth , 1952, Journal of Political Economy.

[16]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[17]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[18]  Jean-Marc Martel,et al.  A fuzzy outranking relation in multicriteria decision making , 1986 .

[19]  Theodor J. Stewart,et al.  An aspiration-level interactive model for multiple criteria decision making , 1992, Comput. Oper. Res..

[20]  Daniel Vanderpooten,et al.  The interactive approach in MCDA: A technical framework and some basic conceptions , 1989 .

[21]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[22]  K. Zaras,et al.  Dominances stochastiques pour deux classes de fonctions d'utilité : concaves et convexes , 1989 .

[23]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[24]  Peter Nijkamp,et al.  Interactive Multiple Goal Programming: An Evaluation and Some Results , 1980 .

[25]  Jean-Marc Martel,et al.  Multiattribute Analysis Based on Stochastic Dominance , 1994 .

[26]  Philippe Vincke,et al.  An outranking method under uncertainty , 1988 .

[27]  M. Rothschild,et al.  Increasing risk: I. A definition , 1970 .

[28]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Bernard Roy,et al.  From Optimisation to Multicriteria Decision Aid: Three Main Operational Attitudes , 1976 .

[30]  Luis G. Vargas,et al.  Uncertainty and rank order in the analytic hierarchy process , 1987 .

[31]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[32]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[33]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .