The Crossing Tverberg Theorem

Tverberg's theorem is one of the cornerstones of discrete geometry. It states that, given a set $X$ of at least $(d+1)(r-1)+1$ points in $\mathbb R^d$, one can find a partition $X=X_1\cup \ldots \cup X_r$ of $X$, such that the convex hulls of the $X_i$, $i=1,\ldots,r$, all share a common point. In this paper, we prove a strengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any $n$ points in the plane in general position span $\lfloor n/3\rfloor$ vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Rebollar et al.\ guarantees $\lfloor n/6\rfloor$ pairwise crossing triangles. Our result generalizes to a result about simplices in $\mathbb R^d,d\ge2$.

[1]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[2]  Imre Bárány,et al.  On a Topological Generalization of a Theorem of Tverberg , 1981 .

[3]  Florian Frick,et al.  Counterexamples to the topological Tverberg conjecture , 2015 .

[4]  Wolfgang Mulzer,et al.  The Rainbow at the End of the Line - A PPAD Formulation of the Colorful Carathéodory Theorem with Applications , 2017, SODA.

[5]  Wayne Goddard,et al.  Crossing families , 1991, SCG '91.

[6]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[7]  Uli Wagner,et al.  Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.

[8]  Florian Frick,et al.  Tverberg plus constraints , 2014, 1401.0690.

[9]  Murad Ozaydin,et al.  Equivariant Maps for the Symmetric Group , 1987 .

[10]  Jan Kyncl,et al.  Crossing Numbers and Combinatorial Characterization of Monotone Drawings of $$K_n$$Kn , 2013, Discret. Comput. Geom..

[11]  S. Teng Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .

[12]  A. Skopenkov,et al.  A user's guide to the topological Tverberg conjecture , 2016, 1605.05141.

[13]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[14]  Uli Wagner,et al.  Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.

[15]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[16]  Gary L. Miller,et al.  Approximate centerpoints with proofs , 2010, Comput. Geom..

[17]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[18]  Xavier Goaoc,et al.  The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg , 2017, Bulletin of the American Mathematical Society.

[19]  Pavle V. M. Blagojevi'c,et al.  Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story , 2016, 1605.07321.

[20]  Wolfgang Mulzer,et al.  Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2011, Discrete & Computational Geometry.

[21]  János Pach,et al.  Unavoidable Configurations in Complete Topological Graphs , 2000, GD.

[22]  Pablo Sober'on,et al.  Tverberg’s theorem is 50 years old: A survey , 2017, Bulletin of the American Mathematical Society.

[23]  Uli Wagner,et al.  Eliminating Higher-Multiplicity Intersections, III. Codimension 2 , 2015, Israel Journal of Mathematics.

[24]  János Pach,et al.  Planar point sets determine many pairwise crossing segments , 2019, STOC.