暂无分享,去创建一个
[1] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[2] Imre Bárány,et al. On a Topological Generalization of a Theorem of Tverberg , 1981 .
[3] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[4] Wolfgang Mulzer,et al. The Rainbow at the End of the Line - A PPAD Formulation of the Colorful Carathéodory Theorem with Applications , 2017, SODA.
[5] Wayne Goddard,et al. Crossing families , 1991, SCG '91.
[6] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[7] Uli Wagner,et al. Eliminating Tverberg Points, I. An Analogue of the Whitney Trick , 2014, SoCG.
[8] Florian Frick,et al. Tverberg plus constraints , 2014, 1401.0690.
[9] Murad Ozaydin,et al. Equivariant Maps for the Symmetric Group , 1987 .
[10] Jan Kyncl,et al. Crossing Numbers and Combinatorial Characterization of Monotone Drawings of $$K_n$$Kn , 2013, Discret. Comput. Geom..
[11] S. Teng. Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .
[12] A. Skopenkov,et al. A user's guide to the topological Tverberg conjecture , 2016, 1605.05141.
[13] M. Gromov. Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .
[14] Uli Wagner,et al. Eliminating Higher-Multiplicity Intersections, I. A Whitney Trick for Tverberg-Type Problems , 2015, ArXiv.
[15] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[16] Gary L. Miller,et al. Approximate centerpoints with proofs , 2010, Comput. Geom..
[17] János Pach,et al. Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.
[18] Xavier Goaoc,et al. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg , 2017, Bulletin of the American Mathematical Society.
[19] Pavle V. M. Blagojevi'c,et al. Beyond the Borsuk–Ulam Theorem: The Topological Tverberg Story , 2016, 1605.07321.
[20] Wolfgang Mulzer,et al. Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2011, Discrete & Computational Geometry.
[21] János Pach,et al. Unavoidable Configurations in Complete Topological Graphs , 2000, GD.
[22] Pablo Sober'on,et al. Tverberg’s theorem is 50 years old: A survey , 2017, Bulletin of the American Mathematical Society.
[23] Uli Wagner,et al. Eliminating Higher-Multiplicity Intersections, III. Codimension 2 , 2015, Israel Journal of Mathematics.
[24] János Pach,et al. Planar point sets determine many pairwise crossing segments , 2019, STOC.