Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy

[1]  J. Smialek,et al.  Alloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications , 2013 .

[2]  General Humanities Annales de Chimie , 2012 .

[3]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[4]  C. Woodward,et al.  Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2011 .

[5]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[6]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[7]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[8]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[9]  Chungen Zhou,et al.  Experimental studies and modeling of the oxidation of multiphase niobium-base alloys , 2009 .

[10]  K. Ray,et al.  Nonisothermal and Isothermal Oxidation Behavior of Nb-Si-Mo Alloys , 2008 .

[11]  Jien-Wei Yeh,et al.  High-Entropy Alloys – A New Era of Exploitation , 2007 .

[12]  J. Yeh Recent progress in high-entropy alloys , 2006 .

[13]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[14]  I. Wright,et al.  Oxidation Resistance: One Barrier to Moving Beyond Ni-Base Superalloys , 2006 .

[15]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[16]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[17]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[18]  D. Dimiduk,et al.  Oxidation behavior of αMo–Mo3Si–Mo5SiB2 (T2) three phase system , 2002 .

[19]  Y. Murayama,et al.  High temperature strength, fracture toughness and oxidation resistance of Nb–Si–Al–Ti multiphase alloys , 2002 .

[20]  D. Dimiduk,et al.  Advanced intermetallic alloys—beyond gamma titanium aluminides , 1997 .

[21]  G. H. Meier,et al.  The oxidation behavior and protection of niobium , 1990 .

[22]  H. Bernstein A model for the oxide growth stress and its effect on the creep of metals , 1987 .

[23]  R. Farraro,et al.  Diffusivity of oxygen and nitrogen in niobium , 1978 .

[24]  R. Perkins,et al.  Oxygen diffusion in niobium and NbZr alloys , 1977 .

[25]  B. Bewlay,et al.  High-temperature refractory metal-intermetallic composites , 1996 .

[26]  M. Kramer,et al.  Boron‐doped molybdenum silicides , 1996 .

[27]  K. Chiang,et al.  Formation of alumina on NbAl alloys , 1988 .

[28]  J. M. West,et al.  Basic Corrosion And Oxidation , 1980 .

[29]  O. Kubaschewski,et al.  Oxidation of metals and alloys , 1953 .