The asymptotic deterministic randomness

Abstract In this Letter, we focus on the deterministic randomness theory. Based on Lissajous map, which is constructed by the skewed parabola map and the non-invertible nonlinearity transform, we present conditions for generating asymptotic deterministic randomness. We rectify several popular statements, such as the function x n = sin 2 ( θ T z n ) cannot generate deterministic randomness, and the corresponding Lyapunov exponent is ln z , etc. In other words, we prove that such function can generate deterministic randomness only when the value of parameter z belongs to some relative prime fraction number which is larger than one. We further prove that the well-known autonomous system that has been stated to generate deterministic randomness can only act as an approximative asymptotic realizable model and any realizable models for deterministic randomness will degenerate to some special high dimensional chaotic system. Furthermore, we analyze the underlying dynamics such as the fixed point, bifurcation process, Lyapunov exponent spectrum, and symbolic dynamics, etc. in detail.

[1]  J. Suarez,et al.  Random maps in physical systems , 2004, nlin/0405027.

[2]  The invariant density for a class of discrete‐time maps involving an arbitrary monotonic function operator and an integer parameter , 1987 .

[3]  Jorge A. Gonzalez,et al.  Analytical Solutions to Multivalued Maps , 1997 .

[4]  P. Mäkilä On chaotic and random sequences , 2004 .

[5]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[6]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[7]  Jorge A. Gonzalez,et al.  Chaotic and stochastic phenomena in systems with non-invertible non-linearities , 2004 .

[8]  Jaroslaw Figwer,et al.  Multisine Transformation — Properties and Applications , 2004 .

[9]  Hendrik Richter,et al.  The Generalized HÉnon Maps: Examples for Higher-Dimensional Chaos , 2002, Int. J. Bifurc. Chaos.

[10]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[11]  F. James Comment on "Exact solutions to chaotic and stochastic systems" [Chaos 11, 1 (2001)]. , 2003, Chaos.

[12]  Jorge A. Gonzalez,et al.  Intrinsic chaos and external noise in population dynamics , 2002, nlin/0209044.

[13]  P. Schmelcher,et al.  Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps. , 1999, Chaos.

[14]  Holger Kantz,et al.  Anti-deterministic behaviour of discrete systems that are less predictable than noise , 2005 .

[15]  Jorge A. Gonzalez,et al.  A random number generator based on unpredictable chaotic functions , 1999 .

[16]  G. Baier,et al.  Maximum hyperchaos in generalized Hénon maps , 1990 .

[17]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[18]  J. A. González,et al.  Truly random dynamics generated by autonomous dynamical systems , 2001 .

[19]  L. Kocarev,et al.  Pseudorandom bits generated by chaotic maps , 2003 .

[20]  S. Ulam A collection of mathematical problems , 1960 .

[21]  Characterizing chaotic processes that generate uniform invariant density , 2005 .

[22]  James D. Meiss,et al.  Generalized Hénon maps: the cubic diffeomorphisms of the plane , 2000 .

[23]  Johan A. K. Suykens,et al.  True random bit generation from a double-scroll attractor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Leonardo Trujillo,et al.  Absolutely Unpredictable Chaotic Sequences , 2000, Int. J. Bifurc. Chaos.

[25]  Shinji Koga The Inverse Problem of Flobenius-Perron Equations in 1D Difference Systems: 1D Map Idealization , 1991 .

[26]  L. E. Guerrero,et al.  From exactly solvable chaotic maps to stochastic dynamics , 2003 .

[27]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[28]  Jorge A. González,et al.  Chaotic and stochastic functions , 2000 .

[29]  Henry Leung,et al.  Design of piecewise maps for chaotic spread-spectrum communications using genetic programming , 2002 .

[30]  Michel Vellekoop,et al.  On Intervals, Transitivity = Chaos , 1994 .

[31]  L. I. Reyes,et al.  Exact solutions to chaotic and stochastic systems. , 2001, Chaos.

[32]  T. Tél,et al.  Statistical properties of chaos demonstrated in a class of one-dimensional maps. , 1993, Chaos.

[33]  Jinhu Lu,et al.  A new discrete chaotic system with rational fraction and its dynamical behaviors , 2004 .

[34]  L. E. Guerrero,et al.  Chaos-induced true randomness , 2002 .

[35]  L. E. Guerrero,et al.  A mechanism for randomness , 2002, nlin/0202022.

[36]  F. K. Diakonos,et al.  A stochastic approach to the construction of one-dimensional chaotic maps with prescribed statistical properties , 1999, chao-dyn/9910020.

[37]  Bai-Lin Haot,et al.  Applied Symbolic Dynamics , 1998 .