arf3DS4: An Integrated Framework for Localization and Connectivity Analysis of fMRI Data

In standard fMRI analysis all voxels are tested in a massive univariate approach, that is, each voxel is tested independently. This requires stringent corrections for multiple comparisons to control the number of false positive tests (i.e., marking voxels as active while they are actually not). As a result, fMRI analyses may suffer from low power to detect activation, especially in studies with high levels of noise in the data, for example developmental or single-subject studies. Activated region fitting (ARF) yields a solution by modeling fMRI data by multiple Gaussian shaped regions. ARF only requires a small number of parameters and therefore has increased power to detect activation. If required, the estimated regions can be directly used as regions of interest in a functional connectivity analysis. ARF is implemented in the R package arf3DS4. In this paper ARF and its implementation are described and illustrated with an example.

[1]  L. Shah,et al.  Functional magnetic resonance imaging. , 2010, Seminars in roentgenology.

[2]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[3]  Thomas E. Nichols,et al.  Modeling Inter‐Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model , 2009, Biometrics.

[4]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[5]  Simon van Gaal,et al.  Unconscious Activation of the Prefrontal No-Go Network , 2010, The Journal of Neuroscience.

[6]  Lourens J. Waldorp,et al.  Effective connectivity of fMRI data using ancestral graph theory: Dealing with missing regions , 2011, NeuroImage.

[7]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[8]  E. Formisano,et al.  Neural correlates of verbal feedback processing: An fMRI study employing overt speech , 2007, Human brain mapping.

[9]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[10]  Xu Chen,et al.  Bayesian Kernel Methods for Analysis of Functional Neuroimages , 2007, IEEE Transactions on Medical Imaging.

[11]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[12]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[13]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[14]  H. White,et al.  Information criteria for selecting possibly misspecified parametric models , 1996 .

[15]  H. White Using Least Squares to Approximate Unknown Regression Functions , 1980 .

[16]  Mark D'Esposito,et al.  Group comparisons: imaging the aging brain. , 2008, Social cognitive and affective neuroscience.

[17]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[18]  Karsten Tabelow,et al.  Analyzing fMRI experiments with structural adaptive smoothing procedures , 2006, NeuroImage.

[19]  Karsten Tabelow,et al.  Statistical Parametric Maps for Functional MRI Experiments in R: The Package fmri , 2011 .

[20]  F Dubois Bowman,et al.  Spatio-temporal modeling of localized brain activity. , 2005, Biostatistics.

[21]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[22]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[23]  Karl J. Friston,et al.  Mixtures of general linear models for functional neuroimaging , 2003, IEEE Transactions on Medical Imaging.

[24]  Michel Dojat,et al.  Temporal and Spatial Independent Component Analysis for fMRI Data Sets Embedded in the AnalyzeFMRI R Package , 2011 .

[25]  A. Raftery Bayes Factors and BIC , 1999 .

[26]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[27]  Lourens J. Waldorp,et al.  Robust and Unbiased Variance of GLM Coefficients for Misspecified Autocorrelation and Hemodynamic Response Models in fMRI , 2009, Int. J. Biomed. Imaging.

[28]  N. Hartvig,et al.  A Stochastic Geometry Model for Functional Magnetic Resonance Images , 2002 .

[29]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[30]  Ingrid Christoffels,et al.  Activated region fitting: A robust high‐power method for fMRI analysis using parameterized regions of activation , 2009, Human brain mapping.

[31]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[32]  Karsten Tabelow,et al.  Image analysis and statistical inference in neuroimaging with R , 2011, NeuroImage.

[33]  J. Lewin Functional MRI: An introduction to methods , 2003 .

[34]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[35]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[36]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[37]  Michael Eichler,et al.  A graphical approach for evaluating effective connectivity in neural systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[39]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[40]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[41]  D. Long Networks of the Brain , 2011 .

[42]  Lourens J. Waldorp,et al.  Functional connectivity analysis of fMRI data using parameterized regions-of-interest , 2011, NeuroImage.

[43]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[44]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .