Consensus Ranking with Signed Permutations

Signed permutations (also known as the hyperoctahedral group) are used in modeling genome rearrangements. The algorithmic problems they raise are computationally demanding when not NP-hard. This paper presents a tractable algorithm for learning consensus ranking between signed permutations under the inversion distance. This can be extended to estimate a natural class of exponential models over the group of signed permutations. We investigate experimentally the eciency of our algorithm for modeling data generated by random reversals.

[1]  Alberto Caprara,et al.  Sorting Permutations by Reversals and Eulerian Cycle Decompositions , 1999, SIAM J. Discret. Math..

[2]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[3]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[4]  M. Fligner,et al.  Distance Based Ranking Models , 1986 .

[5]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Dobzhansky,et al.  Inversions in the Chromosomes of Drosophila Pseudoobscura. , 1938, Genetics.

[7]  David Sankoff,et al.  Multichromosomal median and halving problems under different genomic distances , 2009, BMC Bioinformatics.

[8]  William Arndt,et al.  Improving Inversion Median Computation Using Commuting Reversals and Cycle Information , 2007, RECOMB-CG.

[9]  Raman Arora,et al.  Optimal Estimation and Detection in Homogeneous Spaces , 2010, IEEE Transactions on Signal Processing.

[10]  W. Sethares,et al.  Group theoretical methods in signal processing: learning similarities, transformations and invariants , 2009 .

[11]  M. Fligner,et al.  Multistage Ranking Models , 1988 .

[12]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[13]  Petra Mutzel,et al.  Computational Molecular Biology , 1996 .

[14]  Bernard M. E. Moret,et al.  Finding an Optimal Inversion Median: Experimental Results , 2001, WABI.

[15]  Alberto Caprara The Reversal Median Problem , 2003, INFORMS J. Comput..

[16]  Jeff A. Bilmes,et al.  Consensus ranking under the exponential model , 2007, UAI.

[17]  Vineet Bafna,et al.  Genome Rearrangements and Sorting by Reversals , 1996, SIAM J. Comput..

[18]  D. Sankoff,et al.  Genomic divergence through gene rearrangement. , 1990, Methods in enzymology.

[19]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[20]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[21]  Dan Roth,et al.  Unsupervised rank aggregation with distance-based models , 2008, ICML '08.

[22]  Jun Gao,et al.  Learning to Rank under Multiple Annotators , 2011, IJCAI.

[23]  P. Pevzner,et al.  Computational Molecular Biology , 2000 .

[24]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[25]  Krister M. Swenson,et al.  Maximum independent sets of commuting and noninterfering inversions , 2009, BMC Bioinformatics.

[26]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[27]  I. Kondor,et al.  Group theoretical methods in machine learning , 2008 .

[28]  Jeffrey D. Palmer,et al.  Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence , 2005, Journal of Molecular Evolution.

[29]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[30]  Martin Bader,et al.  The transposition median problem is NP-complete , 2011, Theor. Comput. Sci..

[31]  Jian Ma,et al.  Reconstructing the History of Large-Scale Genomic Changes: Biological Questions and Computational Challenges , 2011, J. Comput. Biol..

[32]  Alberto Caprara,et al.  Sorting by reversals is difficult , 1997, RECOMB '97.