Some new optimal quaternary constant weight codes

Constant weight codes (CWCs) are an important class of codes in coding theory. Generalized Steiner systems GS (2, k, v, g) were first introduced by Etzion and used to construct optimal nonlinear CWCs over an alphabet of size g + 1 with minimum Hamming distance 2k − 3, in which each codeword has length v and weight k. In this paper, Weil’s theorem on character sum estimates is used to show that there exists a GS(2, 4, v, 3) for any prime v ≡ 1 (mod 4) and v > 13. From the coding theory point of view, an optimal nonlinear quaternary (v, 5, 4) CWC exists for such a prime v.

[1]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[2]  Patric R. J. Östergård,et al.  Error-Correcting Codes over an Alphabet of Four Elements , 2001, Des. Codes Cryptogr..

[3]  Kevin T. Phelps,et al.  Generalized Steiner Systems With Block Size Three and Group Size Four , 1999, Ars Comb..

[4]  N. J. A. Sloane,et al.  Bounds on Mixed Binary/Ternary Codes , 1998, IEEE Trans. Inf. Theory.

[5]  Ludo M. G. M. Tolhuizen,et al.  On Perfect Ternary Constant Weight Codes , 1999, Des. Codes Cryptogr..

[6]  Kevin T. Phelps,et al.  Constant Weight Codes and Group Divisible Designs , 1999, Des. Codes Cryptogr..

[7]  Emile H. L. Aarts,et al.  Genetic Algorithms in Coding Theory - A Table for A3(n, d) , 1993, Discret. Appl. Math..

[8]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[9]  Patric R. J. Östergård,et al.  Ternary Constant Weight Codes , 2002, Electron. J. Comb..

[10]  Gennian Ge,et al.  Generalized steiner triple systems with group size five , 1999 .

[11]  Kevin T. Phelps,et al.  Generalized Steiner systems with block size three and group sizeg ? 3(mod 6) , 1997 .

[12]  L. Zhu,et al.  Generalized Steiner Systems GS(2, 4, v, 2) with v a Prime Power ≡ 7 (mod 12) , 2001 .

[13]  Torleiv Kløve,et al.  On the Svanström bound for ternary constant-weight codes , 2001, IEEE Trans. Inf. Theory.

[14]  M. Svanstrom A lower bound for ternary constant weight codes , 1997 .

[15]  A. J. Han Vinck,et al.  On the Constructions of Constant-Weight Codes , 1998, IEEE Trans. Inf. Theory.

[16]  Gennian Ge,et al.  Generalized Steiner Triple Systems with Group Size g = 7, 8 , 2000, Ars Comb..

[17]  Cunsheng Ding,et al.  Some new codes from algebraic curves , 2000, IEEE Trans. Inf. Theory.

[18]  Mattias Svanström A Class of Perfect Ternary Constant-Weight Codes , 1999, Des. Codes Cryptogr..

[19]  Jianxing Yin,et al.  Maximum distance holey packings and related codes , 1999 .

[20]  Frank R. Kschischang,et al.  Some ternary and quaternary codes and associated sphere packings , 1992, IEEE Trans. Inf. Theory.

[21]  Stoyan N. Kapralov,et al.  Error-Correcting Codes over an Alphabet of Four Elements , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[22]  Tuvi Etzion,et al.  Optimal constant weight codes over Zk and generalized designs , 1997, Discret. Math..

[23]  J. Seberry,et al.  Maximal ternary codes and Plotkin's bound , 1984 .

[24]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.

[25]  G. Ge,et al.  Starters and related codes , 2000 .

[26]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .