From irreversible thermodynamics to a robust control theory for distributed process systems

Abstract In this paper we combine recent results that link passivity, as it is understood in system's theory, with concepts from irreversible thermodynamics to develop a robust control design methodology for distributed process systems. In this context, we show that passivity and stabilization of systems where non-dissipative phenomena are taking place is possible under very simple, finite dimensional control configurations. These include, boundary and high gain controllers, which combined with robust identification schemes should be able to provide efficient plant operation.

[1]  W. Ray,et al.  Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .

[2]  Katalin M. Hangos,et al.  Thermodynamic approach to the structural stability of process plants , 1999 .

[3]  H. Sira-Ramírez A general canonical form for feedback passivity of nonlinear systems , 1998 .

[4]  K. Ayappa,et al.  Analysis of microwave heating of materials with temperature-dependent properties , 1991 .

[5]  Ioannis G. Kevrekidis,et al.  Model identification of a spatiotemporally varying catalytic reaction , 1993 .

[6]  S. Shvartsman,et al.  Nonlinear model reduction for control of distributed systems: A computer-assisted study , 1998 .

[7]  B. Erik Ydstie,et al.  Process systems and inventory control , 1998 .

[8]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[9]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[10]  I FossenThor,et al.  Passive nonlinear observer design for ships using lyapunov methods , 1999 .

[11]  A. Palazoglu,et al.  Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes , 1995 .

[12]  Thor I. Fossen,et al.  Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel , 1999, Autom..

[13]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[14]  J. Keenan Availability and irreversibility in thermodynamics , 1951 .

[15]  Antonio A. Alonso,et al.  Process systems and passivity via the Clausius-Planck inequality , 1997 .

[16]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[17]  Julio R. Banga,et al.  Passive control design for distributed process systems: Theory and applications , 2000 .

[18]  Hsueh-Chia Chang,et al.  Accelerated disturbance damping of an unknown distributed system by nonlinear feedback , 1992 .

[19]  Panagiotis D. Christofides,et al.  Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes , 2001 .

[20]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[21]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Daoutidis,et al.  Nonlinear control of diffusion-convection-reaction processes , 1996 .

[23]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[24]  B. Ydstie,et al.  Process systems, passivity and the second law of thermodynamics , 1996 .