Egg provisioning explains the penetrance of symbiont-mediated sex allocation distortion in haplodiploids

[1]  Michael J. Crawley,et al.  The R book , 2022 .

[2]  J. Cook,et al.  Common endosymbionts affect host fitness and sex allocation via egg size provisioning , 2022, Proceedings of the Royal Society B.

[3]  D. Bonte,et al.  Interacting host modifier systems control Wolbachia‐induced cytoplasmic incompatibility in a haplodiploid mite , 2021, bioRxiv.

[4]  B. S. Cooper,et al.  A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency , 2021, Proceedings of the National Academy of Sciences.

[5]  É. Sucena,et al.  Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites , 2021, Evolution; international journal of organic evolution.

[6]  J. Cook,et al.  Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition , 2021, Evolution; international journal of organic evolution.

[7]  R. Kaur,et al.  Living in the endosymbiotic world of Wolbachia: A centennial review. , 2021, Cell host & microbe.

[8]  J. Cook,et al.  Egg size‐mediated sex allocation and mating‐regulated reproductive investment in a haplodiploid thrips species , 2020, Functional Ecology.

[9]  A. Hoffmann,et al.  Stable Introduction of Plant-Virus-Inhibiting Wolbachia into Planthoppers for Rice Protection , 2020, Current Biology.

[10]  Acari Tetranychidae,et al.  Spider mites. , 2020, PlantwisePlus Knowledge Bank.

[11]  S. Bordenstein,et al.  Symbiont-mediated cytoplasmic incompatibility: What have we learned in 50 years? , 2020, eLife.

[12]  B. Bai,et al.  Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins , 2020, The ISME Journal.

[13]  Xiaoli Bing,et al.  Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia‐induced cytoplasmic incompatibility , 2020, Insect molecular biology.

[14]  S. Magalhães,et al.  Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions , 2020, Heredity.

[15]  M. Turelli,et al.  Evolutionary Ecology of Wolbachia Releases for Disease Control. , 2019, Annual review of genetics.

[16]  A. Douglas,et al.  The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host , 2019, Proceedings of the Royal Society B.

[17]  D. Poinsot,et al.  The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. , 2019, Trends in genetics : TIG.

[18]  Zhi-qiang Zhang,et al.  Does size matter? Fecundity and longevity of spider mites (Tetranychus urticae) in relation to mating and food availability , 2018, Systematic and Applied Acarology.

[19]  F. Jiggins,et al.  Back and forth Wolbachia transfers reveal efficient strains to control spotted wing drosophila populations , 2018 .

[20]  T. Fukatsu,et al.  Natsumushi: Image measuring software for entomological studies , 2018, Entomological Science.

[21]  Casper W. Berg,et al.  glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling , 2017, R J..

[22]  P. Ferree,et al.  Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia , 2017, Proceedings of the Royal Society B: Biological Sciences.

[23]  T. Schwander,et al.  Patterns and mechanisms in instances of endosymbiont‐induced parthenogenesis , 2017, Journal of evolutionary biology.

[24]  M. Hochstrasser,et al.  A Wolbachia Deubiquitylating Enzyme Induces Cytoplasmic Incompatibility , 2017, Nature Microbiology.

[25]  S. Bordenstein,et al.  Prophage WO Genes Recapitulate and Enhance Wolbachia-induced Cytoplasmic Incompatibility , 2017, Nature.

[26]  A. Hoffmann,et al.  Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress , 2016, bioRxiv.

[27]  J. Welch,et al.  The incidence of bacterial endosymbionts in terrestrial arthropods , 2015, Proceedings of the Royal Society B: Biological Sciences.

[28]  S. Malfatti,et al.  Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii , 2012, PLoS genetics.

[29]  R. Ferner,et al.  Consequences , 2012, BMJ : British Medical Journal.

[30]  I. Olivieri,et al.  Mating Modifies Female Life History in a Haplodiploid Spider Mite , 2012, The American Naturalist.

[31]  J. Navas-Castillo,et al.  Emerging virus diseases transmitted by whiteflies. , 2011, Annual review of phytopathology.

[32]  A. Himler,et al.  Rapid Spread of a Bacterial Symbiont in an Invasive Whitefly Is Driven by Fitness Benefits and Female Bias , 2011, Science.

[33]  I. Olivieri,et al.  Sex allocation in haplodiploids is mediated by egg size: evidence in the spider mite Tetranychus urticae Koch , 2011, Proceedings of the Royal Society B: Biological Sciences.

[34]  T. Fukatsu,et al.  Wolbachia as a bacteriocyte-associated nutritional mutualist , 2009, Proceedings of the National Academy of Sciences.

[35]  G. Hurst,et al.  The Ecology and Evolution of Microbes that Manipulate Host Reproduction , 2009 .

[36]  David R. Jones Plant Viruses Transmitted by Thrips , 2005, European Journal of Plant Pathology.

[37]  M. Sabelis,et al.  Genetic Conflicts over Sex Ratio: Mite‐Endosymbiont Interactions , 2003, The American Naturalist.

[38]  M. Navajas,et al.  Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae , 2002 .

[39]  M. Egas,et al.  ON THE EVOLUTION OF CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID SPECIES , 2002, Evolution; international journal of organic evolution.

[40]  A. Weeks,et al.  Wolbachia–induced parthenogenesis in a genus of phytophagous mites , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  F. Vavre,et al.  WITHIN‐SPECIES DIVERSITY OF WOLBACHIA‐INDUCED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS , 2001, Evolution; international journal of organic evolution.

[42]  Y. Fujii,et al.  Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[43]  M. Sabelis,et al.  Wolbachia–induced ‘hybrid breakdown’ in the two–fspotted spider mite Tetranychus urticae Koch , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  F. Vavre,et al.  EVIDENCE FOR FEMALE MORTALITY IN WOLBACHIA‐MEDIATED CYTOPLASMIC INCOMPATIBILITY IN HAPLODIPLOID INSECTS: EPIDEMIOLOGIC AND EVOLUTIONARY CONSEQUENCES , 2000, Evolution; international journal of organic evolution.

[45]  D. Poinsot,et al.  Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. , 1998, Genetics.

[46]  M. Turelli EVOLUTION OF INCOMPATIBILITY‐INDUCING MICROBES AND THEIR HOSTS , 1994, Evolution; international journal of organic evolution.

[47]  M. Enders The effect of male size and operational sex ratio on male mating success in the common spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) , 1993, Animal Behaviour.

[48]  M. Turelli,et al.  Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. , 1990, Genetics.

[49]  A. Takafuji,et al.  Inheritance of sex ratio in the Kanzawa spider mite,Tetranychus kanzawai Kishida , 1989, Researches on Population Ecology.

[50]  T. W. Carroll,et al.  Virus-Like Particles and a Spider Mite Intimately Associated with a New Disease of Barley , 1988, Science.

[51]  D. Wright,et al.  World crop pests (editor-in-chief W. Helle). Volumes 1A and 1B: Spider Mites: Their Biology, Natural Enemies and Control , 1987 .

[52]  D. E. Johnston,et al.  Guarding, Aggressive Behavior, and Mating Success in Male Twospotted Spider Mites, , 1976 .

[53]  R. Mitchell THE SEX RATIO OF THE SPIDER MITE TETRANYCHUS URTICAE , 1972 .

[54]  W. Helle FERTILIZATION IN THE TWO‐SPOTTED SPIDER MITE (TETRANYCHUS URTICAE: ACARI) , 1967 .

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  E. Kitajima,et al.  An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses , 2010 .

[57]  H. Noda,et al.  Cardinium symbionts cause cytoplasmic incompatibility in spider mites , 2007, Heredity.

[58]  L. Pijnacker,et al.  Development of the female germ cells and process of internal fertilization in the two-spotted spider mite Tetranychus urticae koch (Acariformes : Tetranychidae)☆ , 1982 .

[59]  W. Overmeer,et al.  Notes on the control of the sex ratio in populations of the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae). , 1969 .