The simplicial model of Univalent Foundations (after Voevodsky)

In this largely expository paper, we construct and investigate a model of the Univalent Foundations of Mathematics in the category of simplicial sets. To this end, we first give a new technique for constructing models of dependent type theory, using universes to obtain coherence. We then construct a (weakly) universal Kan fibration, and use it to exhibit a model in simplicial sets. Lastly, we introduce the Univalence Axiom, in several equivalent formulations, and show that it holds in this model. As a corollary, we conclude that Univalent Foundations are at least as consistent as ZFC with two inaccessible cardinals. The main results of the paper are due to Vladimir Voevodsky.

[1]  Erik Palmgren,et al.  Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..

[2]  Joachim Kock,et al.  Univalence in locally cartesian closed infinity-categories , 2012 .

[3]  S. Lane Categories for the Working Mathematician , 1971 .

[4]  K. Roberts,et al.  Thesis , 2002 .

[5]  M. Hofmann,et al.  The groupoid interpretation of type theory , 1998 .

[6]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Bart Jacobs Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..

[8]  Benno van den Berg,et al.  Types are weak ω‐groupoids , 2008, 0812.0298.

[9]  Richard Garner,et al.  Mini-Workshop: The Homotopy Interpretation of Constructive Type Theory , 2011 .

[10]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[11]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[12]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[13]  S. Awodey,et al.  Homotopy theoretic models of identity types , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[15]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[16]  T. Streicher Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.

[17]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[18]  John Cartmell,et al.  Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..

[19]  M. Hofmann Extensional concepts in intensional type theory , 1995 .

[20]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[21]  Peter Dybjer,et al.  Internal Type Theory , 1995, TYPES.

[22]  Richard Garner,et al.  The identity type weak factorisation system , 2008, Theor. Comput. Sci..

[23]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[24]  Vladimir Voevodsky,et al.  Notes on homotopy λ-calculus , 2006 .

[25]  Eugenio Moggi,et al.  A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.

[26]  Krzysztof Kapulkin,et al.  Homotopy-Theoretic Models of Type Theory , 2011, TLCA.

[27]  Richard Garner On the strength of dependent products in the type theory of Martin-Löf , 2009, Ann. Pure Appl. Log..

[28]  D. Quillen,et al.  The geometric realization of a Kan fibration is a Serre fibration , 1968 .

[29]  Martin Hyland,et al.  Wellfounded Trees and Dependent Polynomial Functors , 2003, TYPES.

[30]  P. Aczel,et al.  Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .

[31]  Michael A. Warren,et al.  Homotopy type theory and Voevodsky's univalent foundations , 2012, ArXiv.