The simplicial model of Univalent Foundations (after Voevodsky)
暂无分享,去创建一个
[1] Erik Palmgren,et al. Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..
[2] Joachim Kock,et al. Univalence in locally cartesian closed infinity-categories , 2012 .
[3] S. Lane. Categories for the Working Mathematician , 1971 .
[4] K. Roberts,et al. Thesis , 2002 .
[5] M. Hofmann,et al. The groupoid interpretation of type theory , 1998 .
[6] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Bart Jacobs. Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..
[8] Benno van den Berg,et al. Types are weak ω‐groupoids , 2008, 0812.0298.
[9] Richard Garner,et al. Mini-Workshop: The Homotopy Interpretation of Constructive Type Theory , 2011 .
[10] J. Adámek,et al. Locally Presentable and Accessible Categories: Bibliography , 1994 .
[11] Jon P. May. Simplicial objects in algebraic topology , 1993 .
[12] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[13] S. Awodey,et al. Homotopy theoretic models of identity types , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Bengt Nordström,et al. Programming in Martin-Löf's Type Theory , 1990 .
[15] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[16] T. Streicher. Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.
[17] Paul G. Goerss,et al. Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.
[18] John Cartmell,et al. Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..
[19] M. Hofmann. Extensional concepts in intensional type theory , 1995 .
[20] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[21] Peter Dybjer,et al. Internal Type Theory , 1995, TYPES.
[22] Richard Garner,et al. The identity type weak factorisation system , 2008, Theor. Comput. Sci..
[23] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[24] Vladimir Voevodsky,et al. Notes on homotopy λ-calculus , 2006 .
[25] Eugenio Moggi,et al. A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.
[26] Krzysztof Kapulkin,et al. Homotopy-Theoretic Models of Type Theory , 2011, TLCA.
[27] Richard Garner. On the strength of dependent products in the type theory of Martin-Löf , 2009, Ann. Pure Appl. Log..
[28] D. Quillen,et al. The geometric realization of a Kan fibration is a Serre fibration , 1968 .
[29] Martin Hyland,et al. Wellfounded Trees and Dependent Polynomial Functors , 2003, TYPES.
[30] P. Aczel,et al. Homotopy Type Theory: Univalent Foundations of Mathematics , 2013 .
[31] Michael A. Warren,et al. Homotopy type theory and Voevodsky's univalent foundations , 2012, ArXiv.