Heat-regulating effects of inert salts on magnesiothermic reduction preparation of silicon nanopowder for lithium storage

[1]  Siddharth V. Patwardhan,et al.  A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond , 2018 .

[2]  M. Dasog,et al.  Systematic evaluation of inorganic salts as a heat sink for the magnesiothermic reduction of silica , 2018, Canadian Journal of Chemistry.

[3]  Yongsong Luo,et al.  Nanosilicon anodes for high performance rechargeable batteries , 2017 .

[4]  Xianglong Li,et al.  Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. , 2017, ACS nano.

[5]  Rachel Ye,et al.  Silicon Derived from Glass Bottles as Anode Materials for Lithium Ion Full Cell Batteries , 2017, Scientific Reports.

[6]  T. Abe,et al.  Surface composition of a SiOx film anode cycled in carbonate electrolyte for Li-ion batteries , 2017 .

[7]  Zonghai Chen,et al.  The role of nanotechnology in the development of battery materials for electric vehicles. , 2016, Nature nanotechnology.

[8]  Bin Zhu,et al.  Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. , 2016, Nano letters.

[9]  Xiangyang Zhou,et al.  Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries , 2016 .

[10]  Jiulin Wang,et al.  Scalable and Cost‐Effective Preparation of Hierarchical Porous Silicon with a High Conversion Yield for Superior Lithium‐Ion Storage , 2016 .

[11]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[12]  Yusheng Yang,et al.  Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction , 2016 .

[13]  Soojin Park,et al.  Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes. , 2016, ACS nano.

[14]  Qianran He,et al.  Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. , 2016, Nanoscale.

[15]  Yitai Qian,et al.  A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries , 2015 .

[16]  Jie Zhou,et al.  Preparation of nanocrystalline silicon from SiCl4 at 200 °C in molten salt for high-performance anodes for lithium ion batteries. , 2015, Angewandte Chemie.

[17]  Jiulin Wang,et al.  Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. , 2014, Nanoscale.

[18]  Cengiz S. Ozkan,et al.  Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries , 2014, Scientific Reports.

[19]  Donghai Wang,et al.  Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries , 2014 .

[20]  K. Iwamoto,et al.  Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries , 2013 .

[21]  Xiulei Ji,et al.  Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions , 2013, Scientific Reports.

[22]  X. Qu,et al.  Interweaved Si@SiOx/C nanoporous spheres as anode materials for Li-ion batteries , 2012 .

[23]  Jiulin Wang,et al.  Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries , 2012 .

[24]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[25]  Z. Jian,et al.  Investigation of Silicon Lapping and Polishing Technique for Micro-Inertial Device , 2012 .

[26]  A. Mclean,et al.  Reduction behaviour of rice husk ash for preparation of high purity silicon , 2011 .

[27]  Chunlei Wang,et al.  Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries , 2011 .

[28]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[29]  S. Jia,et al.  Investigation on Fine Polishing Technique of Silicon Wafer , 2009 .

[30]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[31]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[32]  Zonghai Chen,et al.  Corrigendum: The role of nanotechnology in the development of battery materials for electric vehicles. , 2017, Nature nanotechnology.

[33]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[34]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[35]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.