IEEE Transactions on Pattern Analysis and Machine Intelligence
暂无分享,去创建一个
[1] M. Wand,et al. On nonparametric discrimination using density differences , 1988 .
[2] Nello Cristianini,et al. Enlarging the Margins in Perceptron Decision Trees , 2000, Machine Learning.
[3] David W. Scott,et al. Parametric Statistical Modeling by Minimum Integrated Square Error , 2001, Technometrics.
[4] Helge J. Ritter,et al. Discriminative Densities from Maximum Contrast Estimation , 2002, NIPS.
[5] K. Chaloner,et al. Bayesian analysis in statistics and econometrics : essays in honor of Arnold Zellner , 1996 .
[6] Florentina Bunea,et al. Sparse Density Estimation with l1 Penalties , 2007, COLT.
[7] A. Paulson,et al. The estimation of the parameters of the stable laws , 1975 .
[8] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[9] Chao He,et al. Novelty detection employing an L2 optimal non-parametric density estimator , 2004, Pattern Recognit. Lett..
[10] JooSeuk Kim,et al. Kernel Classification via Integrated Squared Error , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.
[11] Johan A. K. Suykens,et al. A Risk Minimization Principle for a Class of Parzen Estimators , 2007, NIPS.
[12] J. Chergui. The integrated squared error estimation of parameters , 1996 .
[13] Charles C. Taylor,et al. Kernel density classification and boosting: an L2 analysis , 2005, Stat. Comput..
[14] H. Kile,et al. Bandwidth Selection in Kernel Density Estimation , 2010 .
[15] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[16] J. Platt. Sequential Minimal Optimization : A Fast Algorithm for Training Support Vector Machines , 1998 .
[17] T. Wagner,et al. Asymptotically optimal discriminant functions for pattern classification , 1969, IEEE Trans. Inf. Theory.
[18] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[19] A. Tsybakov,et al. Linear and convex aggregation of density estimators , 2006, math/0605292.
[20] Deniz Erdoğmuş,et al. Towards a unification of information theoretic learning and kernel methods , 2004, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004..
[21] Bernhard Schölkopf,et al. Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..
[22] Clayton D. Scott,et al. Performance analysis for L_2 kernel classification , 2008, NIPS.
[23] Johan A. K. Suykens,et al. Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.
[24] Alexander J. Smola,et al. Learning with kernels , 1998 .
[25] David J. Crisp,et al. A Geometric Interpretation of ?-SVM Classifiers , 1999, NIPS 2000.
[26] Chao He,et al. Probability Density Estimation from Optimally Condensed Data Samples , 2003, IEEE Trans. Pattern Anal. Mach. Intell..