Interval competitive agglomeration clustering algorithm

In this study, an interval competitive agglomeration (ICA) clustering algorithm is proposed to overcome the problems of the unknown clusters number and the initialization of prototypes in the clustering algorithm for the symbolic interval-values data. In the proposed ICA clustering algorithm, both the Euclidean distance measure and the Hausdorff distance measure for the symbolic interval-values data are independently considered. Besides, the advantages of both hierarchical clustering algorithm and partitional clustering algorithm are also incorporated into the ICA clustering algorithm. Hence, the ICA clustering algorithm can be fast converges in a few iterations regardless of the initial number of clusters. Moreover, it is also converges to the same optimal partition regardless of its initialization. Experiments with simply data sets and real data sets show the merits and usefulness of the ICA clustering algorithm for the symbolic interval-values data.

[1]  Allan D. Gordon,et al.  An Iterative Relocation Algorithm for Classifying Symbolic Data , 2000 .

[2]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[3]  Edwin Diday,et al.  Symbolic Cluster Analysis , 1989 .

[4]  Edwin Diday,et al.  Symbolic clustering using a new dissimilarity measure , 1991, Pattern Recognit..

[5]  Hans-Hermann Bock,et al.  Classification, Clustering, and Data Analysis , 2002 .

[6]  K. Chidananda Gowda,et al.  Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity , 1995, Pattern Recognit..

[7]  Hans-Hermann Bock CLUSTERING ALGORITHMS AND KOHONEN MAPS FOR SYMBOLIC DATA(Symbolic Data Analysis) , 2003 .

[8]  J. William Ahwood,et al.  CLASSIFICATION , 1931, Foundations of Familiar Language.

[9]  H. Ralambondrainy,et al.  A conceptual version of the K-means algorithm , 1995, Pattern Recognit. Lett..

[10]  Takayuki Saito,et al.  CIRCLE STRUCTURE DERIVED FROM DECOMPOSITION OF ASYMMETRIC DATA MATRIX , 2002 .

[11]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[12]  Yves Lechevallier,et al.  Dynamical Clustering of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance , 2002 .

[13]  Francisco de A. T. de Carvalho,et al.  Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..

[14]  Marie Chavent,et al.  A monothetic clustering method , 1998, Pattern Recognit. Lett..

[15]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[16]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..

[17]  K. Chidananda Gowda,et al.  Clustering of symbolic objects using gravitational approach , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[19]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[20]  Martin Schader,et al.  Data Analysis: Scientific Modeling And Practical Application , 2000 .

[21]  Manabu Ichino,et al.  Generalized Minkowski metrics for mixed feature-type data analysis , 1994, IEEE Trans. Syst. Man Cybern..

[22]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[23]  K. Chidananda Gowda,et al.  Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity , 1995, Pattern Recognit. Lett..

[24]  Francisco de A. T. de Carvalho,et al.  Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..

[25]  D. S. Guru,et al.  Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns , 2005, Pattern Recognit..

[26]  Yves Lechevallier,et al.  Adaptative Hausdorff Distances and Dynamic Clustering of Symbolic Interval Data , 2017 .