Bremsstrahlung-induced gravitational waves in monomial potentials during reheating

We discuss the production of primordial gravitational waves (GW) from radiative inflaton decay during the period of reheating, assuming perturbative decay of the inflaton either into a pair of bosons or fermions, leading to successful reheating satisfying constraint from Big Bang nucleosynthesis. Assuming that the inflaton $\phi$ oscillates in a general monomial potential $V(\phi)\propto \phi^n$, which results in a time-dependent inflaton decay width, we show that the resulting stochastic GW background can have optimistic detection prospects, especially in detectors that search for a high-frequency GW spectrum, depending on the choice of $n$ that determines the shape of the potential during reheating. We also discuss how this GW energy density may affect the measurement of $\Delta N_{\text{eff}}$ for bosonic and fermionic reheating scenarios.

[1]  B. Grzadkowski,et al.  Measuring inflaton couplings via primordial gravitational waves , 2023, Journal of High Energy Physics.

[2]  R. D’Agnolo,et al.  Electromagnetic cavities as mechanical bars for gravitational waves , 2023, Physical Review D.

[3]  N. Bernal,et al.  Gravitational wave from graviton Bremsstrahlung during reheating , 2023, Journal of Cosmology and Astroparticle Physics.

[4]  R. Mondal,et al.  WIMPs, FIMPs, and Inflaton phenomenology via reheating, CMB and ∆Neff , 2023, Journal of High Energy Physics.

[5]  E. Speranza,et al.  Freezing-in gravitational waves , 2022, Physical Review D.

[6]  G. White,et al.  Bremsstrahlung high-frequency gravitational wave signatures of high-scale nonthermal leptogenesis , 2022, Physical Review D.

[7]  K. Olive,et al.  Gravity as a portal to reheating, leptogenesis and dark matter , 2022, Journal of High Energy Physics.

[8]  N. Bernal,et al.  WIMPs during reheating , 2022, Journal of Cosmology and Astroparticle Physics.

[9]  B. Grzadkowski,et al.  Higgs boson induced reheating and ultraviolet frozen-in dark matter , 2022, Journal of High Energy Physics.

[10]  K. Olive,et al.  Inflationary gravitational leptogenesis , 2022, Physical Review D.

[11]  Nicolas Herman,et al.  Electromagnetic antennas for the resonant detection of the stochastic gravitational wave background , 2022, Physical Review D.

[12]  K. Olive,et al.  Gravitational portals with nonminimal couplings , 2022, Physical Review D.

[13]  A. Ringwald,et al.  Revealing the cosmic history with gravitational waves , 2022, Physical Review D.

[14]  N. Bernal,et al.  Ultraviolet freeze-in with a time-dependent inflaton decay , 2022, Journal of Cosmology and Astroparticle Physics.

[15]  Md Riajul Haque,et al.  Gravitational reheating , 2022, Physical Review D.

[16]  M. Laine,et al.  Gravitational wave background from non-Abelian reheating after axion-like inflation , 2022, Journal of Cosmology and Astroparticle Physics.

[17]  R. D’Agnolo,et al.  Detecting high-frequency gravitational waves with microwave cavities , 2021, Physical Review D.

[18]  B. Grzadkowski,et al.  Implications of time-dependent inflaton decay on reheating and dark matter production , 2021, Physics Letters B.

[19]  R. W. Ogburn,et al.  Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.

[20]  N. Bernal,et al.  Gravitational SIMPs , 2021, Journal of Cosmology and Astroparticle Physics.

[21]  K. Olive,et al.  Inflaton oscillations and post-inflationary reheating , 2020, Journal of Cosmology and Astroparticle Physics.

[22]  M. Drewes,et al.  Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.

[23]  J. Steinlechner,et al.  Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies , 2020, 2011.12414.

[24]  A. Ringwald,et al.  Gravitational waves as a big bang thermometer , 2020, Journal of Cosmology and Astroparticle Physics.

[25]  C. Pitrou,et al.  Neutrino decoupling including flavour oscillations and primordial nucleosynthesis , 2020, Journal of Cosmology and Astroparticle Physics.

[26]  Miguel Escudero Abenza Precision early universe thermodynamics made simple: Neff and neutrino decoupling in the Standard Model and beyond , 2020 .

[27]  Masahide Yamaguchi,et al.  A precision calculation of relic neutrino decoupling , 2020, Journal of Cosmology and Astroparticle Physics.

[28]  M. Laine,et al.  Gravitational wave background from Standard Model physics: complete leading order , 2020, Journal of High Energy Physics.

[29]  K. Olive,et al.  Reheating and post-inflationary production of dark matter , 2020, Physical Review D.

[30]  M. Escudero Precision early universe thermodynamics made simple:Neffand neutrino decoupling in the Standard Model and beyond , 2020, 2001.04466.

[31]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[32]  James Unwin,et al.  Ultraviolet freeze-in and non-standard cosmologies , 2019, Journal of Cosmology and Astroparticle Physics.

[33]  S. Hannestad,et al.  MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles , 2019, Journal of Cosmology and Astroparticle Physics.

[34]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[35]  Da Huang,et al.  Stochastic gravitational waves from inflaton decays , 2019, Physical Review D.

[36]  P. Schwaller,et al.  Ricci reheating , 2019, Journal of Cosmology and Astroparticle Physics.

[37]  E. Armengaud,et al.  Physics potential of the International Axion Observatory (IAXO) , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  B. Keating,et al.  Constraints on scalar and tensor spectra from Neff , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  Julian Borrill,et al.  PICO: Probe of Inflation and Cosmic Origins , 2019, 1902.10541.

[40]  D. Figueroa,et al.  Inconsistency of an inflationary sector coupled only to Einstein gravity , 2018, Journal of Cosmology and Astroparticle Physics.

[41]  K. Nakayama,et al.  Stochastic gravitational waves from particle origin , 2018, Physics Letters B.

[42]  Jeremy R. H. Tame Planck , 2018, Approaches to Entropy.

[43]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[44]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[45]  M. Maggiore Gravitational Waves: Volume 2: Astrophysics and Cosmology , 2018 .

[46]  Chiara Caprini,et al.  Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.

[47]  S. Pastor,et al.  Relic neutrino decoupling with flavour oscillations revisited , 2016, 1606.06986.

[48]  M. Lattanzi,et al.  Bounds on very low reheating scenarios after Planck , 2015, 1511.00672.

[49]  M. Laine,et al.  Gravitational wave background from Standard Model physics: qualitative features , 2015, 1504.02569.

[50]  M. J. Pivovaroff,et al.  Conceptual design of the International Axion Observatory (IAXO) , 2014, 1401.3233.

[51]  Andrei Linde,et al.  Superconformal inflationary α-attractors , 2013, 1311.0472.

[52]  Andrei Linde,et al.  Non-minimal Inflationary Attractors , 2013, Journal of Cosmology and Astroparticle Physics.

[53]  Andrei Linde,et al.  Universality class in conformal inflation , 2013, 1306.5220.

[54]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[55]  S. Masi,et al.  COrE (Cosmic Origins Explorer) A White Paper , 2011, 1102.2181.

[56]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[57]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[58]  A. Melchiorri,et al.  New constraints on the reheating temperature of the universe after WMAP-5 , 2008 .

[59]  Tomo Takahashi,et al.  Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating , 2008, 0807.3988.

[60]  E. Phinney,et al.  Laser interferometry for the Big Bang Observer , 2006 .

[61]  N. Cornish,et al.  Detecting the cosmic gravitational wave background with the Big Bang Observer , 2005, gr-qc/0512039.

[62]  T. Hiramatsu,et al.  Detecting a gravitational-wave background with next-generation space interferometers , 2005, gr-qc/0511145.

[63]  G. Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005, hep-ph/0506164.

[64]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[65]  S. Hannestad What is the lowest possible reheating temperature , 2004, astro-ph/0403291.

[66]  Fang-yu Li,et al.  Electromagnetic response of a Gaussian beam to high frequency relic gravitational waves in quintessential inflationary models , 2003, gr-qc/0306092.

[67]  S. Kawamura,et al.  Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. , 2001, Physical review letters.

[68]  E. Kolb,et al.  Largest temperature of the radiation era and its cosmological implications , 2000, hep-ph/0005123.

[69]  K. Kohri,et al.  MeV-scale reheating temperature and thermalization of the neutrino background , 2000, astro-ph/0002127.

[70]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[71]  E. Kolb,et al.  Production of massive particles during reheating , 1998, hep-ph/9809453.

[72]  A. Starobinsky,et al.  Towards the theory of reheating after inflation , 1997, hep-ph/9704452.

[73]  A. Dolgov,et al.  Non-equilibrium corrections to the spectra of massless neutrinos in the early universe , 1997, hep-ph/9703315.

[74]  S. Sarkar Big bang nucleosynthesis and physics beyond the standard model , 1996, hep-ph/9602260.

[75]  S. Hannestad,et al.  Neutrino decoupling in the early Universe. , 1995, Physical review. D, Particles and fields.

[76]  Brandenberger,et al.  Universe reheating after inflation. , 1995, Physical review. D, Particles and fields.

[77]  Shim,et al.  Factorization and polarization in linearized gravity. , 1994, Physical review. D, Particles and fields.

[78]  S. Dodelson,et al.  Nonequilibrium neutrino statistical mechanics in the expanding Universe. , 1992, Physical review. D, Particles and fields.

[79]  A. Starobinsky,et al.  Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization , 1985 .

[80]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[81]  A. A. Starobinskii The perturbation spectrum evolving from a nonsingular, initially de Sitter cosmology, and the microwave background anisotropy , 1983 .

[82]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[83]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[84]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[85]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[86]  R. Mondal,et al.  Inflaton phenomenology via reheating in the light of PGWs and latest BICEP/ Keck data , 2023 .

[87]  M. Drewes,et al.  Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2021, Journal of Cosmology and Astroparticle Physics.

[88]  A. Starobinsky Nonsingular Model of the Universe with the Quantum-Gravitational de Sitter Stage and its Observational Consequences , 1984 .

[89]  ournal of C osmology and A stroparticle hysics J Probing physics beyond the standard model: limits from BBN and the CMB independently and combined , 2022 .