A maximum likelihood Hebbian learning-based method to an agent-based architecture
暂无分享,去创建一个
[1] John Hunt,et al. Hybrid case-based reasoning , 1994, The Knowledge Engineering Review.
[2] Emilio Corchado,et al. Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, Data Mining and Knowledge Discovery.
[3] Larry R. Medsker,et al. Hybrid Intelligent Systems , 1995, Springer US.
[4] Lei Xu,et al. Least mean square error reconstruction principle for self-organizing neural-nets , 1993, Neural Networks.
[5] Emilio Corchado,et al. Connectionist Techniques For The Identification And Suppression Of Interfering Underlying Factors , 2003, Int. J. Pattern Recognit. Artif. Intell..
[6] Ian D. Watson,et al. Applying case-based reasoning - techniques for the enterprise systems , 1997 .
[7] Juan M. Corchado,et al. A COMPLEX CASE-BASED ADVISOR , 2008, Appl. Artif. Intell..
[8] F. Downton. Stochastic Approximation , 1969, Nature.
[9] Agnar Aamodt,et al. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..
[10] D. Signorini,et al. Neural networks , 1995, The Lancet.
[11] Juha Karhunen,et al. Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.
[12] Bernd Fritzke,et al. Fast learning with incremental RBF networks , 1994, Neural Processing Letters.
[13] Juan M. Corchado,et al. Neuro-symbolic System for Business Internal Control , 2004, ICDM.
[14] Juan M. Corchado,et al. FSfRT: Forecasting System for Red Tides , 2004, Applied Intelligence.
[15] Farhi Marir,et al. Case-based reasoning: A review , 1994, The Knowledge Engineering Review.
[16] Colin Fyfe,et al. Non-linear data structure extraction using simple hebbian networks , 1995, Biological Cybernetics.
[17] Emilio Corchado,et al. Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, ICANN.
[18] Emilio Corchado,et al. Maximum likelihood Hebbian rules , 2002, ESANN.
[19] E. Oja,et al. Principal component analysis by homogeneous neural networks, Part I : The weighted subspace criterion , 1992 .
[20] M. T. Wasan. Stochastic Approximation , 1969 .
[21] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[22] Carles Ramió Matas,et al. La auditoría operativa en la práctica: técnicas de mejora organizativa , 1997 .
[23] D. Freedman,et al. Asymptotics of Graphical Projection Pursuit , 1984 .
[24] Janet L. Kolodner,et al. Case-Based Reasoning , 1989, IJCAI 1989.
[25] Aapo Hyvärinen,et al. Complexity Pursuit: Separating Interesting Components from Time Series , 2001, Neural Computation.
[26] Erkki Oja,et al. Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..