Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans

Karasek M, Woldanska‐Okonska M, Czernicki J, Zylinska K, Swietoslawski J. Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans. J. Pineal Res. 1998; 25:240–244. © Munksgaard, Copenhagen

[1]  W R Rogers,et al.  Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates. , 1995, Bioelectromagnetics.

[2]  W. Löscher,et al.  Exposure of DMBA-treated female rats in a 50-Hz, 50 microTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. , 1996, Carcinogenesis.

[3]  Y. Touitou,et al.  Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. , 1996, Life sciences.

[4]  S. Yellon,et al.  Effect of various acute 60 Hz magnetic field exposures on the nocturnal melatonin rise in the adult Djungarian hamster , 1997, Journal of pineal research.

[5]  T. Shigemitsu,et al.  Horizontal or vertical 50-Hz, 1-μT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats , 1994, Neuroscience Letters.

[6]  S. Yellon 60-Hz magnetic field exposure effects on the melatonin rhythm and photoperiod control of reproduction. , 1996, American Journal of Physiology.

[7]  Masamichi Kato,et al.  Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks. , 1994, Bioelectromagnetics.

[8]  C A Bassett,et al.  Beneficial effects of electromagnetic fields , 1993, Journal of cellular biochemistry.

[9]  Y. Touitou,et al.  Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin. Role of duration and intensity of exposure. , 1995, Life sciences.

[10]  R. Reiter,et al.  Pulsed static magnetic field effects on in-vitro pineal indoleamine metabolism. , 1992, Biochimica et biophysica acta.

[11]  Masamichi Kato,et al.  Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. , 1993, Bioelectromagnetics.

[12]  W. Löscher,et al.  Study on pineal function and DMBA-induced breast cancer formation in rats during exposure to a 100-mG, 50 Hz magnetic field. , 1996, Journal of toxicology and environmental health.

[13]  J. Dooley,et al.  Magnetic field effects on spatial discrimination and melatonin levels in mice , 1995, Physiology & Behavior.

[14]  R. Reiter,et al.  Pineal gland “magnetosensitivity” to static magnetic fields is a consequence of induced electric currents (eddy currents) , 1991, Journal of pineal research.

[15]  C E Minder,et al.  Effects of exposure to 16.7 Hz magnetic fields on urinary 6‐hydroxymelatonin sulfate excretion of Swiss railway workers , 1996, Journal of pineal research.

[16]  L. E. Anderson,et al.  Evidence for an Effect of ELF Electromagnetic Fields on Human Pineal Gland Function , 1990, Journal of pineal research.

[17]  R. Reiter,et al.  Electromagnetic fields and melatonin production. , 1993, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[18]  J. Bakos,et al.  Sinusoidal 50 Hz, 500 microT magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats. , 1995, Bioelectromagnetics.

[19]  R. Reiter A review of neuroendocrine and neurochemical changes associated with static and extremely low frequency electromagnetic field exposure , 1993, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[20]  S. Yellon,et al.  Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation of the adult Djungarian hamster , 1994, Journal of pineal research.

[21]  H D Cohen,et al.  Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. , 1996, Bioelectromagnetics.

[22]  S. Reuss,et al.  Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat , 1985, Brain Research.

[23]  T. Shigemitsu,et al.  Circularly polarized 50-Hz magnetic field exposure reduces pineal gland and blood melatonin concentrations of Long-Evans rats , 1994, Neuroscience Letters.

[24]  R. Reiter,et al.  Pineal sensitivity to pulsed static magnetic fields changes during the photoperiod , 1993, Brain Research Bulletin.

[25]  R. Reiter,et al.  Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. , 1995, Bioelectromagnetics.

[26]  S. Reuss,et al.  Magnetic field effects on the rat pineal gland: Role of retinal activation by light , 1986, Neuroscience Letters.

[27]  F. Thoss,et al.  Weak magnetic fields change extinction of a conditioned reaction and daytime melatonin levels in the rat , 1993, Neuroscience Letters.

[28]  R. Sandyk Magnetic fields in the therapy of parkinsonism. , 1992, The International journal of neuroscience.

[29]  R. Sandyk,et al.  The association of diabetes mellitus with dementia in Parkinson's disease. , 1992, The International journal of neuroscience.

[30]  R. Sandyk Successful treatment of multiple sclerosis with magnetic fields. , 1992, The International journal of neuroscience.

[31]  U Wahnschaffe,et al.  Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. , 1994, Oncology.

[32]  P. Semm Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons , 1983 .