A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks

Research in neuroevolutionthat is, evolving artificial neural networks (ANNs) through evolutionary algorithmsis inspired by the evolution of biological brains, which can contain trillions of connections. Yet while neuroevolution has produced successful results, the scale of natural brains remains far beyond reach. This article presents a method called hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) that aims to narrow this gap. HyperNEAT employs an indirect encoding called connective compositional pattern-producing networks (CPPNs) that can produce connectivity patterns with symmetries and repeating motifs by interpreting spatial patterns generated within a hypercube as connectivity patterns in a lower-dimensional space. This approach can exploit the geometry of the task by mapping its regularities onto the topology of the network, thereby shifting problem difficulty away from dimensionality to the underlying problem structure. Furthermore, connective CPPNs can represent the same connectivity pattern at any resolution, allowing ANNs to scale to new numbers of inputs and outputs without further evolution. HyperNEAT is demonstrated through visual discrimination and food-gathering tasks, including successful visual discrimination networks containing over eight million connections. The main conclusion is that the ability to explore the space of regular connectivity patterns opens up a new class of complex high-dimensional tasks to neuroevolution.

[1]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[2]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[3]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[4]  Jeffrey W. Roberts,et al.  遺伝子の分子生物学 = Molecular biology of the gene , 1970 .

[5]  Aristid Lindenmayer,et al.  Adding Continuous Components to L-Systems , 1974, L Systems.

[6]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[7]  Clive Richards,et al.  The Blind Watchmaker , 1987, Bristol Medico-Chirurgical Journal.

[8]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[9]  Paul M. Churchland,et al.  Some reductive Strategies in Cognitive Neurobiology , 1986, The Philosophy of Artificial Intelligence.

[10]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[11]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[12]  T. Wiesel,et al.  Receptive field dynamics in adult primary visual cortex , 1992, Nature.

[13]  Richard K. Belew,et al.  Evolving Aesthetic Sorting Networks Using Developmental Grammars , 1993, ICGA.

[14]  F. Bloom Principles of Neural Science, 3rd ed , 1993 .

[15]  J. Fischer Principles of Neural Science (3rd ed.) , 1993 .

[16]  Risto Miikkulainen,et al.  Evolving Complex Othello Strategies Using Marker-Based Genetic Encoding ofNeural Networks , 1993 .

[17]  Lee Altenberg,et al.  Evolving better representations through selective genome growth , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[18]  Demetri Terzopoulos,et al.  Artificial Fishes: Autonomous Locomotion, Perception, Behavior, and Learning in a Simulated Physical World , 1994, Artificial Life.

[19]  I. Harvey The artificial evolution of adaptive behaviour , 1994 .

[20]  William E. Hart,et al.  The Role of Development in Genetic Algorithms , 1994, FOGA.

[21]  Karl Sims,et al.  Evolving 3D Morphology and Behavior by Competition , 1994, Artificial Life.

[22]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[23]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[24]  Robert G. Reynolds,et al.  Morphogenic Evolutionary Computations: Introduction, Issues and Examples , 1995 .

[25]  Peter J. Angeline,et al.  Morphogenic Evolutionary Computations: Introduction, Issues and Example , 1995, Evolutionary Programming.

[26]  F. Dellaert TOWARD A BIOLOGICALLY DEFENSIBLE MODEL OF DEVELOPMENT , 1995 .

[27]  Maja J. Matarić,et al.  A Developmental Model for the Evolution of Complete Autonomous Agents , 1996 .

[28]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[29]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[30]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[31]  Peter Eggenberger,et al.  Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expression , 1997 .

[32]  P. Lijnzaad,et al.  A physical map of 30,000 human genes. , 1998, Science.

[33]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[34]  Andrew P. Martin Increasing Genomic Complexity by Gene Duplication and the Origin of Vertebrates , 1999, The American Naturalist.

[35]  Peter J. Bentley,et al.  Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary Design Problem , 1999, GECCO.

[36]  X. Yao Evolving Artificial Neural Networks , 1999 .

[37]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[38]  Torsten Reil,et al.  Biologically inspired control of physically simulated bipeds , 2001, Theory in Biosciences.

[39]  Maciej Komosinski,et al.  Comparison of Different Genotype Encodings for Simulated Three-Dimensional Agents , 2002, Artificial Life.

[40]  Gregory S. Hornby,et al.  The advantages of generative grammatical encodings for physical design , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[41]  Jordan B. Pollack,et al.  Creating High-Level Components with a Generative Representation for Body-Brain Evolution , 2002, Artificial Life.

[42]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[43]  Olaf Sporns,et al.  Networks analysis, complexity, and brain function , 2002 .

[44]  O. Sporns Network Analysis , Complexity , and Brain Function , 2002 .

[45]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[46]  M. A. Carreira-Perpiñán,et al.  Cortical Columns , 2002 .

[47]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[48]  R. Beer,et al.  20 – A developmental model for the evolution of complete autonomous agents , 2003 .

[49]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[50]  N. Jakobi 21 – Harnessing morphogenesis , 2003 .

[51]  Diego Federici,et al.  Evolving a neurocontroller through a process of embryogeny , 2004 .

[52]  D. Federici Using Embryonic Stages to increase the evolvability of development , 2004 .

[53]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[54]  Julian Francis Miller,et al.  Evolving a Self-Repairing, Self-Regulating, French Flag Organism , 2004, GECCO.

[55]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[56]  Risto Miikkulainen,et al.  Evolving a Roving Eye for Go , 2004, GECCO.

[57]  Risto Miikkulainen,et al.  Towards an empirical measure of evolvability , 2005, GECCO '05.

[58]  Weidong Jin,et al.  The study of cooperative behavior in predator-prey problem of multi-agent systems , 2005, Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005..

[59]  Risto Miikkulainen,et al.  Real-time neuroevolution in the NERO video game , 2005, IEEE Transactions on Evolutionary Computation.

[60]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[61]  Derek James Evolving a Neural Network Active Vision System for Shape Discrimination , 2005 .

[62]  Risto Miikkulainen,et al.  Evolving a real-world vehicle warning system , 2006, GECCO.

[63]  Kenneth O. Stanley Exploiting Regularity Without Development , 2006, AAAI Fall Symposium: Developmental Systems.

[64]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[65]  Peter Eggenberger-Hotz Evolving Morphologies of Simulated 3d Organisms Based on Differential Gene Expression , 2007 .