Extreme-Quantile Tracking for Financial Time Series

Time series of financial asset values exhibit well-known statistical features such as heavy tails and volatility clustering. We propose a nonparametric extension of the classical Peaks-Over-Threshold method from extreme value theory to fit the time varying volatility in situations where the stationarity assumption may be violated by erratic changes of regime, say. As a result, we provide a method for estimating conditional risk measures applicable to both stationary and nonstationary series. A backtesting study for the UBS share price over the subprime crisis exemplifies our approach.

[1]  Chris Brooks,et al.  A Comparison of Extreme Value Theory Approaches for Determining Value at Risk , 2005 .

[2]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[3]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[4]  P. Tseng,et al.  On the Statistical Analysis of Smoothing by Maximizing Dirty Markov Random Field Posterior Distributions , 2004 .

[5]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[6]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[7]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[8]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[9]  A. C. Davison,et al.  Estimating value-at-risk: a point process approach , 2005 .

[10]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[11]  Elie Ayache,et al.  The Blank Swan: The End of Probability , 2010 .

[12]  A statistical model for contamination due to long-range atmospheric transport of radionuclides , 1985 .

[13]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[14]  Daniel K. Tarullo,et al.  Banking on Basel: The Future of International Financial Regulation , 2008 .

[15]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[16]  Grace L. Yang ESTIMATION OF A BIOMETRIC FUNCTION , 1978 .

[17]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[18]  Jón Dańıelsson,et al.  Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .

[19]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[20]  Paul Embrechts,et al.  Smooth Extremal Models in Finance and Insurance , 2004 .

[21]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[22]  Viviana Fernandez Extreme Value Theory: Value at Risk and Returns Dependence Around the World , 2003 .

[23]  C. Goodhart,et al.  An academic response to Basel II , 2001 .

[24]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[25]  C. Perignon,et al.  The Level and Quality of Value-at-Risk Disclosure by Commercial Banks , 2009 .

[26]  Financial Valuation and Risk Management Working Paper No . 134 A point process approach to Value-at-Risk estimation , 2003 .

[27]  P. Embrechts,et al.  Model Uncertainty and VaR Aggregation , 2013 .

[28]  Paul Embrechts,et al.  The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.

[29]  Anthony C. Davison,et al.  Modelling Excesses over High Thresholds, with an Application , 1984 .

[30]  J. Hüsler Extreme values of non-stationary random sequences , 1986, Journal of Applied Probability.

[31]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[32]  V. Chavez-Demoulin,et al.  High-frequency financial data modeling using Hawkes processes , 2012 .

[33]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[34]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[35]  Malcolm R Leadbetter,et al.  On a basis for 'Peaks over Threshold' modeling , 1991 .

[36]  F. Diebold,et al.  Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management , 1998 .

[37]  Anthony C. Davison,et al.  Modelling Time Series Extremes , 2012 .

[38]  A. Timmermann,et al.  Regime Changes and Financial Markets , 2011 .

[39]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[40]  A. Portilla,et al.  Basel Committee on Banking Supervision Consultative Document Fundamental Review of the Trading Book Dated May 2012 International Swaps and Derivatives Association, Inc. the Global Financial Markets Association , 2013 .

[41]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[42]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[43]  Jorge Mina,et al.  Return to RiskMetrics: The Evolution of a Standard , 2001 .

[44]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .