Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro

In vitro models of rhythms of cognitive relevance, such as gamma (30-80 Hz) and theta (5-12 Hz) rhythms in the hippocampus, demonstrate an absolute requirement for phasic inhibitory synaptic transmission. Such rhythms can occur transiently, of approximately 1 s duration, or persistently, lasting for many hours. In the latter case, stable patterns of interneuron output, and their postsynaptic consequences for pyramidal cell membrane potential, occur despite known constraints of synaptic habituation and potentiation. This review concentrates on recent in vitro evidence revealing a division of labour among different subclasses of interneurons with respect to the frequency of persistent rhythms, and the crucial dependence on gap-junction-mediated intercellular communication for the generation and maintenance of these rhythms.

[1]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[2]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[3]  W. Singer,et al.  Oscillatory Neuronal Synchronization in Primary Visual Cortex as a Correlate of Stimulus Selection , 2002, The Journal of Neuroscience.

[4]  G. Buzsáki,et al.  High-Frequency Oscillations in the Output Networks of the Hippocampal–Entorhinal Axis of the Freely Behaving Rat , 1996, The Journal of Neuroscience.

[5]  C. Chapman,et al.  Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. , 1999, Journal of neurophysiology.

[6]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[7]  S. Stasheff,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. , 1993, Journal of neurophysiology.

[8]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[9]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[10]  P. Somogyi,et al.  Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone , 1996, Nature.

[11]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[12]  M. Steriade,et al.  Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. , 1998, Journal of neurophysiology.

[13]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[14]  Fiona E. N. LeBeau,et al.  GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[16]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[17]  N Kopell,et al.  Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[19]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[20]  Carson C. Chow,et al.  Synchronization and Oscillatory Dynamics in Heterogeneous, Mutually Inhibited Neurons , 1998, Journal of Computational Neuroscience.

[21]  Hannah Monyer,et al.  Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[23]  Carson C. Chow,et al.  Frequency Control in Synchronized Networks of Inhibitory Neurons , 1998, Journal of Computational Neuroscience.

[24]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[25]  D. Pinault,et al.  Antidromic firing occurs spontaneously on thalamic relay neurons: Triggering of somatic intrinsic burst discharges by ectopic action potentials , 1989, Neuroscience.

[26]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[27]  A. Lörincz,et al.  Physiological patterns in the hippocampo‐entorhinal cortex system , 2000, Hippocampus.

[28]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[29]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[30]  J. Haueisen,et al.  Multiplicity in the high-frequency signals during the short-latency somatosensory evoked cortical activity in humans , 2001, Clinical Neurophysiology.

[31]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[32]  M. Steriade,et al.  Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. , 2001, Journal of neurophysiology.

[33]  A. Keil,et al.  Modulation of Induced Gamma Band Responses in a Perceptual Learning Task in the Human EEG , 2002, Journal of Cognitive Neuroscience.

[34]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[35]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[36]  Fiona E. N. LeBeau,et al.  A Model of Atropine‐Resistant Theta Oscillations in Rat Hippocampal Area CA1 , 2002, The Journal of physiology.

[37]  R. Traub,et al.  High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions , 1999, Neuroscience.

[38]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[39]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[40]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[41]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[42]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[43]  Miles A. Whittington,et al.  Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice , 2001, Neuron.

[44]  Fiona E. N. LeBeau,et al.  A model of gamma‐frequency network oscillations induced in the rat CA3 region by carbachol in vitro , 2000, The European journal of neuroscience.

[45]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[46]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.