A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of high power field measurement techniques.

This review was compiled as part of a project to formulate a UK strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields. It reviews the scientific literature relating to various methods of measuring high power fields which have been developed for application in health care, sonochemistry and industrial ultrasonics, and compares these methods in terms of attributes such as spatial resolution, bandwidth and sensitivity.

[1]  E F Carome,et al.  Optical fiber acoustic sensor. , 1977, Applied optics.

[2]  Bill D. Cook Measurement from the nearfield of an ultrasonically produced phase grating , 1975 .

[3]  Takahi Hasegawa,et al.  Acoustic‐Radiation Force on a Solid Elastic Sphere , 1969 .

[4]  P. A. Lewin,et al.  Miniature piezoelectric polymer ultrasonic hydrophone probes , 1981 .

[5]  W R Laird,et al.  Displacement amplitude as a measure of the acoustic output of ultrasonic scalers. , 1986, Dental materials : official publication of the Academy of Dental Materials.

[6]  R. C. Preston,et al.  PVDF membrane hydrophone performance properties and their relevance to the measurement of the acoustic output of medical ultrasonic equipment , 1983 .

[7]  B. Granz,et al.  PVDF hydrophone for the measurement of shock waves , 1988, 6th International Symposium on Electrets,(ISE 6) Proceedings..

[8]  P M Shankar,et al.  Characterization of ultrasonic transducers using a fiberoptic sensor. , 1994, Ultrasound in medicine & biology.

[9]  Shriniwas D. Samant,et al.  Semiquantitative characterization of ultrasonic cleaner using a novel piezoelectric pressure intensity measurement probe , 1995 .

[10]  R.W.B. Stephens,et al.  IEEE ultrasonics symposium , 1972 .

[11]  H. Taylor,et al.  Embedded fiber-optic Fabry-Perot ultrasound sensor , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  A.R. Williams,et al.  Exposimetry of low-frequency ultrasonic dental devices , 1988, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  C R Hill,et al.  Calibration of ultrasonic beams for bio-medical applications. , 1970, Physics in medicine and biology.

[14]  S D Pye,et al.  Robust electromagnetic probe for the monitoring of lithotriptor output. , 1991, Ultrasound in medicine & biology.

[15]  M. Platte,et al.  A polyvinylidene fluoride needle hydrophone for ultrasonic applications , 1985 .

[16]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .

[17]  B. Zeqiri,et al.  Overview of Measurement Techniques , 1991 .

[18]  Masao Ide,et al.  A Miniature Hydrophone for High Acoustic Pressures , 1992 .

[19]  G R Torr,et al.  A constant-flow calorimeter for the measurement of acoustic power at megahertz frequencies. , 1977, Physics in medicine and biology.

[20]  C. J. Martin,et al.  Design of thermistor probes for measurement of ultrasound intensity distributions , 1983 .

[21]  A. R. Selfridge,et al.  Spot poled reflector style hydrophone for shock wave measurements , 1991, IEEE 1991 Ultrasonics Symposium,.

[22]  C. J. Martin,et al.  The use of thermistor probes to measure energy distribution in ultrasound fields. , 1980, Ultrasonics.

[23]  P.M. Shankar,et al.  Fiber optic ultrasonic sensor using Raman-Nath light diffraction , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  R. Chivers,et al.  Two miniature ceramic ultrasonic probes , 1981 .

[25]  Joseph A. Bucaro,et al.  Optical fiber acoustic sensor , 1991 .

[26]  J E Saunders,et al.  A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. , 1989, Ultrasound in medicine & biology.

[27]  R C Chivers,et al.  Measurement of ultrasonic exposure with radiation force and thermal methods. , 1976, Ultrasonics.

[28]  Gilbert Casamatta,et al.  Development of a thermoelectric sensor for ultrasonic intensity measurement , 1995 .

[29]  P C Beard,et al.  Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer. , 1996, Applied optics.

[30]  Dominique Cathignol,et al.  PVDF hydrophone with liquid electrodes for shock wave measurements (in lithotripsy) , 1990, IEEE Symposium on Ultrasonics.

[31]  L. J. Bond,et al.  Ultrasonics international 85: London, UK, 2–4 July 1985 , 1986 .

[32]  H. Kuttruff,et al.  MEASUREMENT OF SOUND INTENSITY BY MEANS OF MULTI-MICROPHONE PROBES , 1994 .

[33]  W. Fry,et al.  Determination of Absolute Sound Levels and Acoustic Absorption Coefficients by Thermocouple Probes—Theory , 1954 .

[34]  L Filipczyński,et al.  Capacitance hydrophones for pressure determination in lithotripsy. , 1990, Ultrasound in medicine & biology.

[35]  Gilbert Casamatta,et al.  Local investigation of some ultrasonic devices by means of a thermal sensor , 1995 .

[36]  A. Wilhelm,et al.  Power measurement in sonochemistry , 1995 .

[37]  L. Gaete-Garretón,et al.  Ultrasonic detectors for high-intensity acoustic fields , 1993 .

[38]  Y. Gonthier,et al.  Method for determining the chemically active zones in a high-frequency ultrasonic reactor , 1994 .

[39]  J. Staudenraus,et al.  Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water , 1993 .

[40]  J M Hutchison,et al.  Measurement of field distributions in ultrasonic cleaning baths: implications for cleaning efficiency. , 1995, Physics in medicine and biology.

[41]  D. R. Bacon,et al.  Primary calibration of ultrasonic hydrophone using optical interferometry , 1988, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  B. Pugin,et al.  Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry , 1987 .

[43]  T A Delchar,et al.  A calorimeter for ultrasound total power measurements , 1994 .

[44]  K C Shotton,et al.  A pvdf membrane hydrophone for operation in the range 0.5 Mhz to 15 Mhz. , 1980, Ultrasonics.

[45]  P. A. Lewin,et al.  Devices for ultrasound field parameter measurements , 1992, Proceedings of the 1992 International Biomedical Engineering Days.

[46]  Timothy G. Leighton A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of cavitation monitoring techniques , 1997 .

[47]  Mathias Fink,et al.  Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer , 1992 .

[48]  A. Lorenz,et al.  A laseroptic hydrophone for high energy ultrasound , 1991, IEEE 1991 Ultrasonics Symposium,.

[49]  Gilbert Casamatta,et al.  Thermosensitive Probe Based Technique of Local Investigation of ultrasonic reactors , 1993 .

[50]  David W. Griffith,et al.  Observation of Raman–Nath optical diffraction in the phase grating plane , 1982 .

[51]  R. Reibold Optical near-field investigation into the Raman-Nath and KML regimes of diffraction by ultrasonic waves , 1990 .

[52]  D. R. Bacon Properties of a PVDF Hydrophone with 100 MHz Bandwidth for Studying Medical, Nonlinear and Other Fields , 1980 .