Solving search problems by strongly simulating quantum circuits
暂无分享,去创建一个
T. H. Johnson | J. D. Biamonte | S. R. Clark | D. Jaksch | J. Biamonte | D. Jaksch | T. Johnson | S. Clark
[1] N. Yoran,et al. Efficient classical simulation of the approximate quantum Fourier transform , 2006, quant-ph/0611241.
[2] Jin-Yi Cai,et al. Holographic algorithms: from art to science , 2007, STOC '07.
[3] I. McCulloch. From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.
[4] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[5] S. R. Clark,et al. Dynamical simulations of classical stochastic systems using matrix product states. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] M. Plenio,et al. Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain , 2009, 0907.5582.
[7] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[8] Sergey Bravyi,et al. Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..
[9] Maarten Van Den Nes. Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .
[10] Oded Goldreich. P, Np, and Np-Completeness: The Basics of Computational Complexity , 2010 .
[11] Maarten Van den Nest,et al. Quantum matchgate computations and linear threshold gates , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[13] D. Browne. Efficient classical simulation of the quantum Fourier transform , 2006, quant-ph/0612021.
[14] S. Bravyi. Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.
[15] E. Bach. Discrete Logarithms and Factoring , 1984 .
[16] Jacob D. Biamonte,et al. Categorical Tensor Network States , 2010, ArXiv.
[17] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[18] H. Briegel,et al. Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.
[19] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[20] Maarten Van den Nest,et al. Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..
[21] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[22] D. DiVincenzo,et al. Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.
[23] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[24] Carsten Damm,et al. Problems Complete for +L , 1990, IMYCS.
[25] G. Vidal,et al. Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.
[26] Igor L. Markov,et al. Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..
[27] Leslie G. Valiant,et al. Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.
[28] G. Vidal,et al. Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.
[29] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[30] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[31] N. Yoran,et al. Classical simulation of limited-width cluster-state quantum computation. , 2006, Physical review letters.
[32] R. Jozsa,et al. Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[33] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[34] B. McBride,et al. Art to science. , 1990, Journal.
[35] Sean Clark,et al. Generalized clifford groups and simulation of associated quantum circuits , 2008, Quantum Inf. Comput..
[36] Eugene C. Freuder. A sufficient condition for backtrack-bounded search , 1985, JACM.
[37] H. Briegel,et al. Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.
[38] R. Raussendorf,et al. Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.
[39] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[40] R. Jozsa. On the simulation of quantum circuits , 2006, quant-ph/0603163.
[41] Leslie G. Valiant,et al. Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..
[42] Carsten Damm,et al. Problems Complete for \oplus L , 1990, Inf. Process. Lett..
[43] Emanuel Knill,et al. Fermionic Linear Optics and Matchgates , 2001, ArXiv.
[44] Igor L. Markov,et al. Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.