Solving search problems by strongly simulating quantum circuits

Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time.

[1]  N. Yoran,et al.  Efficient classical simulation of the approximate quantum Fourier transform , 2006, quant-ph/0611241.

[2]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[3]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[4]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[5]  S. R. Clark,et al.  Dynamical simulations of classical stochastic systems using matrix product states. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Plenio,et al.  Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain , 2009, 0907.5582.

[7]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[8]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[9]  Maarten Van Den Nes Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .

[10]  Oded Goldreich P, Np, and Np-Completeness: The Basics of Computational Complexity , 2010 .

[11]  Maarten Van den Nest,et al.  Quantum matchgate computations and linear threshold gates , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[13]  D. Browne Efficient classical simulation of the quantum Fourier transform , 2006, quant-ph/0612021.

[14]  S. Bravyi Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.

[15]  E. Bach Discrete Logarithms and Factoring , 1984 .

[16]  Jacob D. Biamonte,et al.  Categorical Tensor Network States , 2010, ArXiv.

[17]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[18]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[19]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[21]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[22]  D. DiVincenzo,et al.  Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  Carsten Damm,et al.  Problems Complete for +L , 1990, IMYCS.

[25]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[26]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[27]  Leslie G. Valiant,et al.  Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.

[28]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[29]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[30]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[31]  N. Yoran,et al.  Classical simulation of limited-width cluster-state quantum computation. , 2006, Physical review letters.

[32]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  B. McBride,et al.  Art to science. , 1990, Journal.

[35]  Sean Clark,et al.  Generalized clifford groups and simulation of associated quantum circuits , 2008, Quantum Inf. Comput..

[36]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[37]  H. Briegel,et al.  Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.

[38]  R. Raussendorf,et al.  Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.

[39]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[40]  R. Jozsa On the simulation of quantum circuits , 2006, quant-ph/0603163.

[41]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[42]  Carsten Damm,et al.  Problems Complete for \oplus L , 1990, Inf. Process. Lett..

[43]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[44]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.