Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.

A recently introduced real-space lattice methodology for solving the three-dimensional Poisson-Nernst-Planck equations is used to compute current-voltage relations for ion permeation through the gramicidin A ion channel embedded in membranes characterized by surface dipoles and/or surface charge. Comparisons to a variety of experimental results, presented herein, have proven largely successful. Strengths and weaknesses of the method are discussed.

[1]  D. Busath,et al.  The use of physical methods in determining gramicidin channel structure and function. , 1993, Annual review of physiology.

[2]  Randal R Ketchem,et al.  High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. , 1997, Structure.

[3]  O. Andersen,et al.  Molecular determinants of channel function. , 1992, Physiological reviews.

[4]  M Karplus,et al.  Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. , 1995, Biophysical journal.

[5]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[6]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[7]  O. Andersen,et al.  Gramicidin channels. , 2005, Annual review of physiology.

[8]  Bob Eisenberg Ionic Channels in Biological Membranes: Natural Nanotubes , 1998 .

[9]  G. R. Smith,et al.  Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. , 1998, Biophysical journal.

[10]  R. Koeppe,et al.  Engineering the gramicidin channel. , 1996, Annual review of biophysics and biomolecular structure.

[11]  O. Andersen,et al.  The Heterogeneous Collision Velocity for Hydrated Ions in Aqueous Solutions Is ∼104 cm/s , 1996 .

[12]  S. Lowen The Biophysical Journal , 1960, Nature.

[13]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[14]  C. Venkatachalam,et al.  Theoretical conformational analysis of the Gramicidin a transmembrane channel. I. Helix sense and energetics of head‐to‐head dimerization , 1983 .

[15]  D. Haydon,et al.  Surface charge, surface dipoles and membrane conductance. , 1973, Biochimica et biophysica acta.

[16]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[17]  T. Weiss,et al.  Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[18]  S. McLaughlin,et al.  Surface charge and the conductance of phospholipid membranes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[20]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[21]  J. Rasaiah,et al.  MOBILITY AND SOLVATION OF IONS IN CHANNELS , 1996 .

[22]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[23]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[24]  E. Bamberg,et al.  Effects of surface charge on the conductance of the gramicidin channel. , 1979, Biochimica et biophysica acta.

[25]  J. Killian,et al.  Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. , 1998, Biochemistry.

[26]  Christopher Miller Ionic Hopping Defended , 1999, The Journal of general physiology.

[27]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[28]  B. Wallace,et al.  Gramicidin channels and pores. , 1990, Annual review of biophysics and biophysical chemistry.

[29]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[30]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[31]  B. Eisenberg,et al.  Progress and Prospects in Permeation , 1999, The Journal of general physiology.

[32]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[33]  K. Sharp,et al.  Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model. , 1998, Biophysical journal.

[34]  L. Yang,et al.  Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[35]  O. Andersen,et al.  Surface charges and ion channel function. , 1991, Annual review of physiology.

[36]  T L Croxton,et al.  Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations. , 1989, Journal of theoretical biology.

[37]  J. Andrew McCammon,et al.  Solving the finite‐difference non‐linear Poisson–Boltzmann equation , 1992 .

[38]  J. Slotboom Iterative scheme for 1- and 2- dimensional d.c.-transistor simulation , 1969 .

[39]  B. Hille Ionic channels of excitable membranes , 2001 .

[40]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[41]  D. Levitt,et al.  Modeling of Ion Channels , 1999, The Journal of general physiology.

[42]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[43]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[44]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[45]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[46]  Shin-Ho Chung,et al.  Study of ionic currents across a model membrane channel using Brownian dynamics. , 1998, Biophysical journal.

[47]  Peter C. Jordan,et al.  Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approaches , 1992, Quarterly Reviews of Biophysics.

[48]  C. D. Cole,et al.  Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. , 1998, Biophysical journal.

[49]  S. Bezrukov,et al.  Membrane surface-charge titration probed by gramicidin A channel conductance. , 1998, Biophysical journal.

[50]  W. Hubbell,et al.  The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. , 1986, Biophysical journal.

[51]  K. Sharp,et al.  Exploration of the structural features defining the conduction properties of a synthetic ion channel. , 1999, Biophysical journal.

[52]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[53]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[54]  D. Levitt General continuum theory for multiion channel. II. Application to acetylcholine channel. , 1991, Biophysical journal.

[55]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.