Space Phased Array Antenna Developments: A Perspective on Structural Design

As the “right-hand man” to space communications, navigation, environmental monitoring, and other satellite systems, the space active phased array antenna is capable of scanning and covering long distances and large scale ranges through its complex deployment mechanism, large physical aperture, and lightweight structural design. In comparison with mechanical scanning antennas, the space active phased array antennas can realize flexible beam scanning through the active phased array principle, while simultaneously achieving a high gain, low sidelobe, high resolution, and high reliability. Improving the comprehensive performance of the satellite is crucial with the rapid development requirement and large application field. In this article, the development history of the space active phased array antennas is summarized, and these antennas are characterized by the following structural features: large aperture, deployment mechanism, and lightweight configuration. The state of the art of space deployable active phased array antennas is also presented. Furthermore, seven crucial design technologies of antenna essential components are discussed, and the development trends of structural technologies of the space deployable active phased array antenna are demonstrated.

[1]  Zhu Rui-ping,et al.  Preliminary Study of Spacial Inflatable Deploying Antenna , 2008 .

[2]  Rolf Werninghaus,et al.  The TerraSAR-X Mission and System Design , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Zhang Yongshun Analysis and compensation of spaceborne SAR antenna array deformation , 2012 .

[5]  Kang Xiao-lu Propulsion system of USA AEHF military communication satellite and its application on AEHF-1 satellite , 2011 .

[6]  David Peterman,et al.  Distortion measurement and compensation in a synthetic aperture radar phased-array antenna , 2010, 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference.

[7]  Hoonyol Lee Radargrammetry of high resolution synthetic aperture radar onboard KOMPSAT-5 , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Marian Werner,et al.  Shuttle Radar Topography Mission (SRTM) Mission Overview , 2001 .

[9]  H.S.C. Wang Performance of phased array antennas with mechanical errors , 1990 .

[10]  A. Coletta,et al.  COSMO-SkyMed an existing opportunity for observing the Earth , 2010 .

[11]  Tian Hao Disturbance on Satellite Antenna by Dynamic Error of Flexible-joint and Trajectory Tracking Control , 2011 .

[12]  Akira Meguro,et al.  In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII , 2009 .

[13]  Wei Wang,et al.  Electromechanical coupling based performance evaluation of distorted phased array antennas with random position errors , 2016 .

[14]  Masanobu Yajima,et al.  Ka-band Active Phased Array Antenna for WINDS Satellite , 2003 .

[15]  D. Evans,et al.  The SIR-C/X-SAR mission , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[16]  William G. Anderson,et al.  High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems , 2009 .

[17]  G. L. Parker Large space system control technology overview , 1980 .

[18]  Erik Lier,et al.  Phased array calibration and characterization based on orthogonal coding: Theory and experimental validation , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[19]  Charles Elachi,et al.  SIR-B-The Second Shuttle Imaging Radar Experiment , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[20]  M. S. Hauhe,et al.  High density packaging of X-band active array modules , 1997 .

[21]  M. Oppermann,et al.  T/R-module technologies today and possible evolutions , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[22]  A. Giraldez SAOCOM – 1 ARGENTINA L BAND SAR MISSION OVERVIEW , 2003 .

[23]  Mary J. Heppner,et al.  DISCOVER II, SIGI, and MicroSKILLS: A Descriptive Review , 1985 .

[24]  Wei Xu,et al.  Multichannel synthetic aperture radar systems with a planar antenna for future spaceborne microwave remote sensing , 2012, IEEE Aerospace and Electronic Systems Magazine.

[25]  C. Yuen,et al.  A 20 GHz MMIC power module for transmit phased array applications , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[26]  Suzuki Shinichi,et al.  The overview of the L-band SAR onboard ALOS-2 , 2010 .

[27]  Congsi Wang,et al.  Analytical method of pattern analysis for cluster-fed reflectors with random feed displacements , 2018 .

[28]  Deng Yun-bo Development of L-band Small-sized Space-borne T/R Module , 2011 .

[29]  Congsi Wang,et al.  Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas , 2010 .

[30]  Pasquale Capece,et al.  Active SAR antennas development in Italy , 2011, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[31]  P. Zulch,et al.  Array deformation performance impacts on a LEO L-band GMTI SBR , 2005, 2005 IEEE Aerospace Conference.

[32]  Sergei Rudenko,et al.  New improved orbit solutions for the ERS-1 and ERS-2 satellites , 2012 .

[33]  A. Beaudoin,et al.  An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI) , 2002 .

[34]  João Roberto dos Santos,et al.  MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System) , 2009, Sensors.

[35]  Yuji Okada,et al.  Hardware performance of L-band SAR system onboard ALOS-2 , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[36]  W.L. van Rossum,et al.  Concept for measuring and compensating array deformation , 2007, 2007 European Radar Conference.

[37]  S. Buckreuss,et al.  The German satellite mission TerraSAR-X , 2008, IEEE Aerospace and Electronic Systems Magazine.

[38]  Jack J. Schuss,et al.  The IRIDIUM main mission antenna concept , 1999 .

[39]  R. Jordan The Seasat-A synthetic aperture radar system , 1980, IEEE Journal of Oceanic Engineering.

[40]  Fushun Zhang,et al.  Analysis of performance of active phased array antennas with distorted plane error , 2009 .

[41]  Guan Hong-shan Study on Thermal Control Design of Satellite-Borne SAR Antenna , 2007 .

[42]  Shuai Yuan,et al.  Structural–electrical coupling optimisation for radiating and scattering performances of active phased array antenna , 2018 .

[43]  T W Murphey,et al.  Matching Space Antenna Deformation Electronic Compensation Strategies to Support Structure Architectures , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[44]  Ira Steve Smith,et al.  Recent developments in a large inflatable antenna , 2018, 2018 IEEE Aerospace Conference.

[45]  C. Breed,et al.  Paleodrainages of the Eastern Sahara-The Radar Rivers Revisited (SIR-A/B Implications for a Mid-Tertiary Trans-Afnrcan Drainage System) , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[46]  A. Hajjari,et al.  SBR waveform and processing parameters as a function of array distortion , 2006, 2006 IEEE Aerospace Conference.

[47]  Robert K. Hawkins,et al.  The RADARSAT-1 imaging performance, 14 years after launch, and independent report on RADARSAT-2 image quality , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[48]  Chen Jiangping A Summary of the Development of Advanced HPRs for Space Power Abroad , 2011 .

[49]  M. Ohtsuka,et al.  On-Board Calibration Methods for Mechanical Distortions of Satellite Phased Array Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[50]  E. J. Fitzpatrick SPACEWAY system summary , 1995 .

[51]  A. Freedman,et al.  Antenna auto-calibration and metrology approach for the AFRL/JPL space based radar , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[52]  Jill Smyth,et al.  RADARSAT-2 program update , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[53]  L. R. Beck,et al.  Perspectives Perspectives Perspectives Perspectives Perspectives Remote Sensing and Human Health: New Sensors and New Opportunities , 2022 .

[54]  Wolfgang Keydel,et al.  Perspectives and visions for future SAR systems , 2003 .

[55]  Wei Wang,et al.  On the performance of array antennas with mechanical distortion errors considering element numbers , 2017 .

[56]  Woonbong Hwang,et al.  Design of load-bearing antenna structures by embedding technology of microstrip antenna in composite sandwich structure , 2005 .

[57]  W. A. Imbriale,et al.  Spaceborne antennas for planetary exploration , 2006 .

[58]  Eastwood Im,et al.  Prospects of Large Deployable Reflector Antennas for a New Generation of Geostationary Doppler Weather Radar Satellites , 2007 .

[59]  Zong Gang "Galileo" Satellite Navigation System Overview , 2011 .

[60]  S. Ahmed,et al.  RADARSAT Mission Requirements and Concept , 1993 .

[61]  F. J. Dietrich,et al.  The Globalstar cellular satellite system , 1998 .

[62]  Yan Lubin Technology Status and Developing Trends of Satellite Phased Array , 2012 .

[63]  Sang-Ryool Lee Overview of KOMPSAT-5 program, mission, and system , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[64]  Deng Yun-bo System of Transmission and Reception of Satellite-borne High Power Active Feed Network , 2007 .

[65]  W. Townsend,et al.  An initial assessment of the performance achieved by the Seasat-1 radar altimeter , 1980, IEEE Journal of Oceanic Engineering.

[66]  J. Huang,et al.  The development of inflatable array antennas , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[67]  Werner Wiesbeck,et al.  Influence of mechanical antenna distortions on the performance of the HRWS SAR system , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[68]  Thomas George Overview of MEMS/NEMS technology development for space applications at NASA/JPL , 2003, SPIE Microtechnologies.

[69]  A. Ziaei,et al.  Potential technological breakthroughs for phased array antennas , 2008, 2008 IEEE Radar Conference.

[70]  W. Noell,et al.  MEMS for space , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[71]  Herbert Shea Reliability of MEMS for space applications , 2006, SPIE MOEMS-MEMS.

[72]  Chen Sheng-you Large Deployable Phased Array Antenna for Space-based Radar and Its Key Techniques , 2008 .

[73]  G. Barrot,et al.  GOMOS on Envisat: an overview , 2004 .

[74]  Shannon T. Brown,et al.  Analysis of Array Distortion in a Microwave Interferometric Radiometer: Application to the GeoSTAR Project , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[75]  Fernando Pellon de Miranda,et al.  Analysis of JERS-1 (Fuyo-1) SAR data for vegetation discrimination in northwestern Brazil using the semivariogram textural classifier (STC) , 1996 .

[76]  Yan Wang,et al.  Compensation method for distorted planar array antennas based on structural–electromagnetic coupling and fast Fourier transform , 2018 .