Experimental Study on Numerical Controlled Electrochemical Turning

In order to machine revolving workpieces which are made of difficult-to-cut materials or have low rigidity, the technology of Numerical Controlled Electrochemical Turning (NC-ECT) was put forward and the preliminary experimental study was presented in this paper. To carry out the study, an experimental setup was developed, and a new special kind of inner-spraying cathode with single linear edge was designed according to the process of machining cylindrical surface and the requirement of stable electrolyte flow field. First, the NC-ECT method was simply described. Then, considering the structure of the cathode and the machining process, the method for calculating the material removed depth per revolution in machining the cylindrical surface was given. Finally, the experiments of machining the cylindrical surface were carried out. Experiments showed: 1) The calculated material removed depth per revolution is well consistent with the actual value of the machining process, which decreases with the increase of the rotational speed of the workpiece and increases almost linearly with the increase of the working voltage; 2) The surface roughness decreases with the increase of the rotational speed of the workpiece and the working voltage; 3) The working current in the machining process trend to stable after several revolutions.