The twisted cubic in PG(3, q) and translation spreads in H(q)

Using the connection between translation spreads of the classical generalized hexagon H(q) and the twisted cubic of PG(3,q), established in [European J. Combin. 23 (2002) 367-376], we prove that if q^n=1(mod3), q odd, q>=4n^2-8n+2 and n>2, then H(q^n) does not admit an F"q-translation spread.

[1]  Michel Lavrauw,et al.  On the classification of semifield flocks , 2003 .

[2]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[3]  Joseph A. Thas,et al.  Generalized Quadrangles of Order (s, s2), I , 1994, J. Comb. Theory, Ser. A.

[4]  Olga Polverino,et al.  On the Twisted Cubic of PG(3, q) , 2003 .

[5]  Jacques Tits,et al.  Sur la trialité et certains groupes qui s’en déduisent , 1959 .

[6]  G. Lunardon,et al.  Flocks, Ovoids of Q(4,q)and Designs , 1997 .

[7]  Rudolf Lide,et al.  Finite fields , 1983 .

[8]  Leonard Carlitz A theorem on "ordered" polynomials in a finite field , 1962 .

[9]  Joseph A. Thas Switching of generalized quadrangles of order s and applications , 2003 .

[10]  Alan Offer,et al.  Translation spreads of the split Cayley hexagon , 2003 .

[11]  Joseph A. Thas,et al.  Generalized Quadrangles and Flocks of Cones , 1987, Eur. J. Comb..

[12]  Guglielmo Lunardon,et al.  Generalized hexagons and polar spaces , 1999, Discret. Math..

[13]  Joseph A. Thas Generalized Quadrangles of Order (s, s2), II , 1997, J. Comb. Theory, Ser. A.

[14]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[15]  Alan Offer Translation Ovoids and Spreads of the Generalized Hexagon H(q) , 2001 .

[16]  Olga Polverino,et al.  Spreads in H(q) and 1-systems of Q(6, q ) , 2002, Eur. J. Comb..

[17]  Joseph A. Thas,et al.  Translation Ovoids of Generalized Quadrangles and Hexagnos , 1998 .

[18]  Joseph A. Thas,et al.  Polar Spaces, Generalized Hexagons and Perfect Codes , 1980, J. Comb. Theory A.