Survey and comparison of engineering beam theories for helicopter rotor blades

Nomenclature A = blade cross-sectional area #!, B2 = blade cross-sectional constants E = Young's modulus e = blade root offset eA = tension axis chordwise offset F = internal forces / = applied forces G = shear modulus H = angular momentum Iv. = area moment of inertia about the deformed y axis /,. = area moment of inertia about the deformed z axis J = polar moment of inertia K = moment strain km = polar radius of gyration kml = blade chordwise radius of gyration km2 = blade flapwise radius of gyration Lv = in-plane load Lw = out-of-plane load M = internal moment My = torsion load m = blade running mass, applied moment, Eq. (16) P — linear momentum q = generalized displacement R = blade length r = blade length coordinate T — tension u = blade extension V = generalized linear speeds v = in-plane blade bending w = out-of-plane blade bending y = force strain 6 = blade twist <p = blade torsion i// = generalized rotation fl = rotor speed, generalized angular speeds, Eq. (16)

[1]  Dewey H. Hodges,et al.  Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations , 1985 .

[2]  Dewey H. Hodges,et al.  Linear Flap-Lag Dynamics of Hingeless Helicopter Rotor Blades in Hover , 1972 .

[3]  O. Bauchau A Beam Theory for Anisotropic Materials , 1985 .

[4]  P. Friedmann,et al.  Structural dynamic modeling of advanced composite propellers by the finite element method , 1987 .

[5]  Peretz P. Friedmann,et al.  Nonlinear equations of equilibrium for elastic helicopter or wind turbine blades undergoing moderate deformation , 1978 .

[6]  Alan D. Stemple,et al.  A finite element model for composite beams undergoing large deflection with arbitrary cross‐sectional warping , 1989 .

[7]  Alan D. Stemple,et al.  Finite-Element Model for Composite Beams with Arbitrary Cross-Sectional Warping , 1988 .

[8]  David A. Peters,et al.  On the nonlinear deformation geometry of Euler-Bernoulli beams. [rotary wings] , 1980 .

[9]  Henry Parkus,et al.  The Disturbed Flapping Motion of Helicopter Rotor Blades , 1948 .

[10]  M. Borri,et al.  Anisotropic beam theory and applications , 1983 .

[11]  Dewey H. Hodges,et al.  Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover , 1988 .

[12]  Inderjit Chopra,et al.  Aeroelastic Stability Analysis of a Composite Bearingless Rotor Blade , 1986 .

[13]  Alexander H. Flax,et al.  The Bending of Rotor Blades , 1947 .

[14]  John C. Houbolt,et al.  Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades , 1957 .

[15]  Yechiel Shulman Stability of a Flexible Helicopter Rotor Blade in Forward Flight , 1956 .

[16]  J. Kosmatka On the Behavior of Pretwisted Beams with Irregular Cross Sections Having Applications to Rotor Blades , 1990 .

[17]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[18]  Olivier A. Bauchau,et al.  Finite Element Approach to Rotor Blade Modeling , 1987 .

[19]  Dewey H. Hodges,et al.  Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset , 1976 .

[20]  William E. Boyce,et al.  Vibrations of twisted beams. II , 1954 .

[21]  Olivier A. Bauchau,et al.  Nonlinear Composite Beam Theory , 1988 .

[22]  I. Chopra,et al.  Dynamic stability of a rotor blade using finite element analysis , 1981 .

[23]  D. Hodges A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams , 1990 .

[24]  K. C. Park,et al.  A computational procedure for multibody systems including flexible beam dynamics , 1990 .

[25]  Dewey H. Hodges,et al.  Review of composite rotor blade modeling , 1990 .

[26]  Carlos E. S. Cesnik,et al.  Variational-asymptotical analysis of initially twisted and curved composite beams , 1992 .

[27]  Mark V. Fulton,et al.  Application of the variational-asymptotical method to static and dynamic behavior of elastic beams , 1991 .

[28]  Dewey H. Hodges,et al.  Stability of nonuniform rotor blades in hover using a mixed formulation , 1980 .

[29]  Maurice I. Young,et al.  A Theory of Rotor Blade Motion Stability in Powered Flight , 1964 .

[30]  L. Goland,et al.  Dynamic Effects in Rotor Blade Bending , 1951 .

[31]  Marco Borri,et al.  Linear analysis of naturally curved and twisted anisotropic beam , 1991 .

[32]  Earl H. Dowell,et al.  Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades , 1974 .

[33]  Dewey H. Hodges,et al.  Nonlinear Equations for Bending of Rotating Beams with Application to Linear Flap-Lag Stability of Hingeless Rotors , 1973 .

[34]  Dewey H. Hodges,et al.  A geometrically nonlinear analysis for nonhomogeneous, anisotropic beams , 1989 .

[35]  P. Tong,et al.  Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight , 1972 .

[36]  Olivier A. Bauchau,et al.  Large displacement analysis of naturally curved and twisted composite beams , 1987 .

[37]  K. R. V. Kaza,et al.  Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades , 1976 .

[38]  Robert P. Coleman,et al.  Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades , 1958 .

[39]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[40]  Inderjit Chopra,et al.  Aeroelastic Stability Analysis of a Composite Rotor Blade , 1985 .